Wireless Media Access Protocols
Wired Communication

**Pros**
- Very reliable
  - For Ethernet, medium HAS TO PROVIDE a Bit Error Rate (BER) of $10^{-12}$ (one error for every trillion bits!)
    - Insulated wires; wires placed underground and in walls
    - Error Correction Techniques
  - Very high transfer rates - currently up to 100 Gbit/s
  - Long distance - Up to 40km in 10-Gbit/s Ethernet

**Cons**
- Expensive to set up infrastructure
- Infrastructure is fixed once set up
- No physical mobility
Wireless Communication

**Pros**
- Allows mobility
- Much cheaper and easier to deploy, change, and upgrade!

**Cons**
- Exposed (unshielded) medium
  - Susceptible to physical phenomena (interference)
  - Variable BER – Error correction may not suffice in all cases
- Slower data rates for wider distances
- Link layer, and higher-layers, designed for wired medium
  - E.g. TCP assumes loss = congestion
  - Difficult to “hide” underlying behavior
- Security: anyone in range hears transmission
Wireless

- FCC oversees all wireless communication
- **Licensed Bands**
  - Cellular phones, 3G, 4G, AM/FM radio, broadcast television, satellites, WiMax
  - Use of resources left to “owner” of band
- **Unlicensed Bands**
  - 802.11, Bluetooth, ZigBee, IR, WiMax
  - No license needed – free for all!
  - Restrictions to limit interference
    - Limit on transmission power
    - Spread spectrum communication

**Unlicensed Bands**

- 900 MHz
  - Industrial, Scientific and Medical (ISM)
- 2.4 GHz
- 5.4 GHz
- 10 – 66 GHz
Wireless Communication Standards (Alphabet Soup)

- Cellular (2G): GSM, CDMA, GPRS
- 3G: CDMA2000, W-CDMA, EDGE
- 4G: WiMAX, LTE
- IEEE 802.11
  - A: 5.0Ghz band, max 54Mbps
  - B: 2.4Ghz band, max 11Mbps
  - G: 2.4Ghz, max 54Mbps
  - N: 2.4/5Ghz, max 600Mbps
  - Many other versions
- IEEE 802.15 – lower power wireless
  - 802.15.1: 2.4Ghz, max 2.1 Mbps (Bluetooth)
  - 802.15.4: 2.4Ghz, max 250 Kbps (Sensor Networks)
Wireless Link Characteristics

- 200 Mbps: 802.11n
- 54 Mbps: 802.11a,g
- 5–11 Mbps: 802.11b
- 4 Mbps
- 1 Mbps: 802.15.1
- 384 Kbps
- 56 Kbps: IS-95, CDMA, GSM
- UMTS/WCDMA-HSDPA, CDMA2000-1xEVDO
- 3G enhanced
- WiMAX
- 3G
- 2G

- Indoor: 10–30m
- Outdoor: 50–200m
- Mid range outdoor: 200m–4Km
- Long range outdoor: 5Km–20Km
Challenges of wireless

- **Path loss**
  - Signal attenuation as a function of distance
  - Signal-to-noise ratio (SNR—Signal Power/Noise Power) decreases, make signal unrecoverable

- **Multipath propagation**
  - Signal reflects off surfaces, effectively causing self-interference

- **Internal interference (from other users)**
  - Hosts within range of each other collide with one another’s transmission

- **External interference**
  - Microwave is turned on and blocks your signal
Spread Spectrum

- Direct Sequence Spread Spectrum
  - Spread the signal over a wider frequency band than required
  - Originally designed to thwart jamming
  - Original 802.11 uses 83 MHz in 2.4 GHz band

- Frequency-Hopped Spread Spectrum
  - Uses 80 1MHz sub-bands in 2.4 GHz band
  - Transmit over a random sequence of frequencies
Spread Spectrum

- **Direct Sequence Spread Spectrum**
  - Spread the signal over a wider frequency band than required
  - Originally designed to thwart jamming
  - Original 802.11 uses 83 MHz in 2.4 GHz band

- **Frequency Hopped Spread Spectrum**
  - Uses 80 1MHz sub-bands in 2.4 GHz band
  - Transmit over a random sequence of frequencies

**Frequency hopping had many inventors**

- **1942**: actress Hedy Lamarr and composer George Antheil patented Secret Communications System
  - Piano-roll to change between 88 frequencies, and was intended to make radio-guided torpedoes harder for enemies to detect or to jam

- The patent was rediscovered in the 1950s during patent searches when private companies independently developed Code Division Multiple Access, a civilian form of spread-spectrum
Direct Sequence Spread Spectrum

- Spread Spectrum
  - For each bit, send XOR of that bit and n random bits
  - Random sequence is known to both sender and receiver
  - Called n-bit chipping code (802.11 uses 11-bit code)

Data stream: 1010
Random sequence: 0100101101011001
XOR of the two: 1011101110101001
Communication Characteristics

- **Rate**
  - Defines the communication speeds

- **Frequency**
  - Defines the behavior in the physical environment

- **Range**
  - Defines the physical communication area

- **Power**
  - Defines the cost in terms of energy
Communication Characteristics

- **Rate**
  - Defines the communication speeds
  - **Channel Bandwidth**
    - Defined by the specifications of the technology
  - **Available Bandwidth**
    - Defined by the current use of the communication channel
      - Channel competition – MAC layer
      - Bandwidth competition – Transport layer
Communication Characteristics

- Frequency/signal characteristics
  - Defines the behavior in the physical environment
    - Does the signal go through walls?
    - Is the signal susceptible to multipath fading?
  - Challenge
    - Many technologies use the same frequency
Communication Characteristics

- **Range**
  - Defines the physical communication area
  - May be affected by buildings, walls, people
  - May be affected by distance
Communication Characteristics

- **Power**
  - Defines the cost in terms of energy
  - Power can be adapted to save energy
    - Inversely affects range
Communication Characteristics

- Rate
  - Defines the communication speed

- Frequency
  - Defines the behavior in the physical environment

- Range
  - Defines the physical communication area

- Power
  - Defines the cost in terms of energy
Current Wireless Technologies

- IEEE 802.11
  - Wireless LAN (WLAN)
  - MAC layer based on Ethernet
    - Originally called “wireless Ethernet”

<table>
<thead>
<tr>
<th>Standard</th>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-802.11</td>
<td>2 Mbps</td>
<td>900 Mhz</td>
<td>100 m</td>
<td>100 mW</td>
</tr>
<tr>
<td>IEEE 802.11b</td>
<td>11 Mbps</td>
<td>2.4 GHz</td>
<td>35/150 m</td>
<td>100 mW</td>
</tr>
<tr>
<td>IEEE 802.11g</td>
<td>54 Mbps</td>
<td>2.4 GHz</td>
<td>35/150 m</td>
<td>100 mW</td>
</tr>
<tr>
<td>IEEE 802.11a</td>
<td>54 Mbps</td>
<td>5 GHz</td>
<td>10 /120 m</td>
<td>100 mW</td>
</tr>
<tr>
<td>IEEE 802.11n</td>
<td>600 Mbps</td>
<td>2.4/5 GHz</td>
<td>70 /250 m</td>
<td>100 mW</td>
</tr>
</tbody>
</table>
IEEE 802.11 - Physical Layer

- **IEEE 802.11 b**
  - Direct Sequence Spread Spectrum
    - Uses 83 MHz in 2.4 GHz band
    - Spread the signal over a wider frequency band than required
    - Originally designed to prevent jamming
  - 3 orthogonal channels

- **IEEE 802.11 g**
  - Frequency-Hopped Spread Spectrum
    - Uses 80 1MHz sub-bands in 2.4 GHz band
    - Transmit over a random sequence of frequencies
      - Hop 10 times a second
    - Originally designed to avoid snooping
  - 3 orthogonal channels
IEEE 802.11 - Physical Layer

- IEEE 802.11 a
  - Orthogonal Frequency Division Multiplexing (OFDM)
  - 13 orthogonal channels

- IEEE 802.11 n
  - Works on both 802.11a and 802.11g spectrum
  - MIMO – Multi-input, Multi-output antenna
    - Up to 4 antenna
IEEE 802.11 - Physical Layer

Channel Rate vs. Signal strength

- All versions of IEEE 802.11 can reduce the rate to increase the signal strength
  - IEEE 802.11 b: 1, 2, 5.5, 11 Mbps
  - IEEE 802.11 a, g: 6, 9, 12, 18, 24, 36, 48, or 54 Mbps

- Increased range → lower signal → lower rate
IEEE 802.11 Extensions

- IEEE 802.11e
  - Enhancements: QoS, including packet bursting
- IEEE 802.11i
  - Enhanced security
- IEEE 802.11p
  - WAVE - Wireless Access for the Vehicular Environment
- IEEE 802.11s
  - ESS Mesh Networking
- IEEE 802.11u
  - Interworking with non-802 networks (for example, cellular)
- IEEE 802.11 ac
  - Provides high throughput in the 5 GHz band
  - Wider RF bandwidth, more streams (up to 8), and high-density modulation (up to 256 QAM)
BlueTooth – IEEE 802.15.1

- Originally designed as a cable replacement technology
- Master/Slave configuration
- Bluetooth Low Energy (BLE) for low power discovery

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>BlueTooth</td>
<td>3 Mbps</td>
<td>2.4 GHz</td>
<td>100 m</td>
<td>100 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10 m</td>
<td>2.5 mW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 m</td>
<td>1 mW</td>
</tr>
</tbody>
</table>
BlueTooth

- Physical Layer
  - Frequency-Hopped Spread Spectrum
    - Uses 79 1MHz sub-bands in 2.4 GHz band
    - Transmit over a random sequence of frequencies
      - Hop 1600 times a second
    - 5 orthogonal sub-hopping sets

- MAC Layer
  - Slotted
    - Managed by the master
    - Single slot packet
      - Max data rate of 172Kbps
    - Multislot frames
      - Support higher rates of 721Kbps
Current Wireless Technologies

- ZigBee – IEEE 802.15.4
  - Low power, short range
    - Sensor networks
    - Personal area networks

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZigBee (IEEE 802.15.4)</td>
<td>250 kbps</td>
<td>2.4 GHz</td>
<td>10 - 100 m</td>
<td>1 mW</td>
</tr>
<tr>
<td></td>
<td>40 Kbps</td>
<td>915 MHz</td>
<td>10 - 100 m</td>
<td>1 mW</td>
</tr>
<tr>
<td></td>
<td>20 Kbps</td>
<td>868 MHz</td>
<td>10 - 100 m</td>
<td>1 mW</td>
</tr>
</tbody>
</table>
ZigBee

- Physical Layer
  - Direct Sequence Spread Spectrum
    - 2.4 GHz – 16 orthogonal channels
    - 915 MHz – 10 orthogonal channels
    - 868 MHz – 1 channel

- MAC Layer
  - CSMA/CA
  - Battery Life Extension (BLE) mode
    - Limit the back-off exponent to max 2
# Current Wireless Technologies

- **InfraRed**
  - Directional

<table>
<thead>
<tr>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfraRed – IrDA</td>
<td>9600 bps – 16 Mbps</td>
<td>&lt; 1 m</td>
<td>Low</td>
</tr>
</tbody>
</table>
Current Wireless Technologies

- **RFID**
  - Passive technology
  - Used for inventory control

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFID – Near Field</td>
<td></td>
<td></td>
<td>&lt; 10 cm</td>
<td>Self-powered</td>
</tr>
<tr>
<td>RFID – Far Field</td>
<td></td>
<td></td>
<td>&lt; 3 m</td>
<td>Self-powered</td>
</tr>
</tbody>
</table>
RFID Basics
- Reader powers the “tag”
- Antenna “captures” the energy for a response
- Simple MAC
  - All tags respond
- Contention-based MAC
  - Use ALOHA or Tree-splitting algorithm to avoid collisions

Near field
- Magnetic induction
  - Range < 10 cm

Far field
- Electromagnetic wave capture
  - Range < 3 m
Current Wireless Technologies

- **WiMAX – IEEE 802.16**
  - Wireless Metropolitan Area Networks (WMAN)
  - May require line-of-sight (LOS)

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>WiMAX – LOS</td>
<td>70 Mbps</td>
<td>10-66 GHz</td>
<td>50 km</td>
<td>Very high</td>
</tr>
<tr>
<td>WiMAX Non-LOS</td>
<td>~14 Mbps</td>
<td>2-11 GHz</td>
<td>~10 km</td>
<td>Very high</td>
</tr>
</tbody>
</table>
Current Wireless Technologies

- **WiMAX – IEEE 802.16**
  - Transmissions to/from base station by hosts with omnidirectional antenna
  - Base station-to-base station backhaul with point-to-point antenna

<table>
<thead>
<tr>
<th></th>
<th>Max Rate</th>
<th>Frequency</th>
<th>Range</th>
<th>Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>WiMAX – LOS</strong></td>
<td>70 Mbps</td>
<td>10-66 GHz</td>
<td>50 km</td>
<td>Very high</td>
</tr>
<tr>
<td><strong>WiMAX Non-LOS</strong></td>
<td>~14 Mbps</td>
<td>2-11 GHz</td>
<td>~10 km</td>
<td>Very high</td>
</tr>
</tbody>
</table>
Medium Access Control

- IEEE 802.11
  - A physical and multiple access layer standard for wireless local area networks (WLAN)

Ad Hoc Network: no servers or access points

Client Server Network
Medium Access Control

- Wireless channel is a shared medium
- Need access control mechanism to avoid interference
- Why not CSMA/CD?
Ethernet MAC Algorithm

- Listen for carrier sense before transmitting
- Collision: What you hear is not what you sent!
CSMA/CD in WLANs?

- Most (if not all) radios are half-duplex
  - Listening while transmitting is not possible
- Collision might not occur at sender
  - Collision at receiver might not be detected by sender!
Wireless Ethernet - CSMA/CA

- CS – Carrier Sense
  - Nodes can distinguish between an idle and a busy link
- MA - Multiple Access
  - A set of nodes send and receive frames over a shared link
- CA – Collision Avoidance
  - Nodes use protocol to prevent collisions from occurring
IEEE 802.11 MAC Layer Standard

- Similar to Ethernet
- But consider the following:
Hidden Terminal Problem

- Node B can communicate with both A and C
- A and C cannot hear each other
- When A transmits to B, C cannot detect the transmission using the carrier sense mechanism
- If C transmits, collision will occur at node B
MACA Solution for Hidden Terminal Problem

- When node A wants to send a packet to node B
  - Node A first sends a Request-to-Send (RTS) to A
- On receiving RTS
  - Node A responds by sending Clear-to-Send (CTS)
  - provided node A is able to receive the packet
- When a node C overhears a CTS, it keeps quiet for the duration of the transfer
IEEE 802.11 MAC Layer Standard

- But we still have a problem
Exposed Terminal Problem

- B talks to A
- C wants to talk to D
- C senses channel and finds it to be busy
- C stays quiet (when it could have ideally transmitted)
MACA Solution for Exposed Terminal Problem

- Sender transmits Request to Send (RTS)
- Receiver replies with Clear to Send (CTS)
- Neighbors
  - See CTS - Stay quiet
  - See RTS, but no CTS - OK to transmit
IEEE 802.11 MAC Layer Standard

MACAW – Multiple Access with Collision Avoidance for Wireless

- Sender transmits Request to Send (RTS)
- Receiver replies with Clear to Send (CTS)
- Neighbors
  - See CTS
    - Stay quiet
  - See RTS, but no CTS
    - OK to transmit
- Receiver sends ACK for frame
  - Neighbors stay silent until they hear ACK
Collisions

- Still possible
  - RTS packets can collide!

- Binary exponential backoff
  - Backoff counter doubles after every collision and reset to minimum value after successful transmission
  - Performed by stations that experience RTS collisions

- RTS collisions not as bad as data collisions in CSMA
  - Since RTS packets are typically much smaller than DATA packets
Reliability

- Wireless links are prone to errors
  - High packet loss rate detrimental to transport-layer performance
- Mechanisms needed to reduce packet loss rate experienced by upper layers
A Simple Solution to Improve Reliability - MACAW

- When node B receives a data packet from node A, node B sends an Acknowledgement (ACK)
- If node A fails to receive an ACK
  - Retransmit the packet
Revisiting the Exposed Terminal Problem

Problem
- Exposed terminal solution doesn't consider CTS at node C
- With RTS-CTS, C doesn’t wait since it doesn’t hear A’s CTS
  - With B transmitting DATA, C can’t hear intended receiver’s CTS
  - C trying RTS while B is transmitting is useless
Deafness

- For the scenario below
  - Node A sends an RTS to B
    - While node C is receiving from D,
  - Node B cannot reply with a CTS
    - B knows that D is sending to C
    - A keeps retransmitting RTS and increasing its own BO timeout
broadcast/multicast

• Problem
  ○ Basic RTS-CTS only works for unicast transmissions

• For multicast
  ○ RTS would get CTS from each intended receiver
  ○ Likely to cause (many) collisions back at sender
Multicast - MACAW

- Sort-of solution
  - Don’t use CTS for multicast data
- Receivers recognize multicast destination in RTS
  - Don’t return CTS
  - Sender follows RTS immediately by DATA
  - After RTS, all receivers defer for long enough for DATA
- Helps, but doesn’t fully solve problem
  - Like normal CSMA, only those in range of sender will defer
  - Others in range of receiver will not defer
IEEE 802.11 Wireless MAC

- Distributed and centralized MAC components
  - Distributed Coordination Function (DCF)
  - Point Coordination Function (PCF)
- DCF suitable for multi-hop ad hoc networking
- DCF is a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA) protocol
IEEE 802.11 DCF

- Uses RTS-CTS exchange to avoid hidden terminal problem
  - Any node overhearing a CTS cannot transmit for the duration of the transfer
- Uses ACK to achieve reliability
- Any node receiving the RTS cannot transmit for the duration of the transfer
  - To prevent collision with ACK when it arrives at the sender
  - When B is sending data to C, node A keeps quite
IEEE 802.11 CSMA/CA

- Nodes stay silent when carrier sensed
  - Physical carrier sense
  - Virtual carrier sense
    - Network Allocation Vector (NAV)
    - NAV is updated based on overheard RTS/CTS/DATA/ACK packets, each of which specified duration of a pending transmission

- Backoff intervals used to reduce collision probability
IEEE 802.11 Physical Carrier Sense

Interference range

Carrier sense range

Transmit range

A — B — C — D

Packet

E — F
IEEE 802.11 Virtual Carrier Sense

RTS = Request-to-Send

Pretending a circular range
IEEE 802.11 Virtual Carrier Sense

\[ \text{NAV} = \text{remaining duration to keep quiet} \]

\[ \text{RTS} = \text{Request-to-Send} \]
IEEE 802.11 Virtual Carrier Sense

CTS = Clear-to-Send
IEEE 802.11 Virtual Carrier Sense

CTS = Clear-to-Send

CTS = 8

NAV = 8
IEEE 802.11 Virtual Carrier Sense

- DATA packet follows CTS
IEEE 802.11 Virtual Carrier Sense

- Successful data reception acknowledged using ACK
IEEE 802.11

Reserved area
Ethernet vs. IEEE 802.11

- If carrier is sensed
  - Send immediately
  - Send maximum of 1500B data (1527B total)
  - Wait 9.6 $\mu$s before sending again

- If carrier is sensed
  - When should a node transmit?
Interframe Spacing

- Interframe spacing
  - Plays a large role in coordinating access to the transmission medium

- Varying interframe spacings
  - Creates different priority levels for different types of traffic!

- 802.11 uses 4 different interframe spacings

---

DIFS

\[ t \]

medium busy

\[ \text{SIFS} \]

contention

\[ \text{next frame} \]

\[ \text{DIFS} \]

\[ \text{PIFS} \]

\[ \text{DIFS} \]
IEEE 802.11 - CSMA/CA

- Sensing the medium
- If free for an Inter-Frame Space (IFS)
  - Station can start sending (IFS depends on service type)
- If busy
  - Station waits for a free IFS, then waits a random back-off time (collision avoidance, multiple of slot-time)
- If another station transmits during back-off time
  - The back-off timer stops (fairness)
Types of IFS

- **SIFS**
  - Short interframe space
  - Used for highest priority transmissions
  - RTS/CTS frames and ACKs

- **DIFS**
  - DCF interframe space
  - Minimum idle time for contention-based services (> SIFS)
Types of IFS

- PIFS
  - PCF interframe space
  - Minimum idle time for contention-free service (>SIFS, <DIFS)

- EIFS
  - Extended interframe space
  - Used when there is an error in transmission
IEEE 802.11 - Competing Stations

- **station**
  - station\(_1\)
  - station\(_2\)
  - station\(_3\)
  - station\(_4\)
  - station\(_5\)

- **DIFS**
- **bo\(_e\)**
- **bo\(_r\)**
- **busy**
- **medium not idle (frame, ack etc.)**
- **elapsed backoff time**
- **residual backoff time**
- **packet arrival at MAC**

- **bo\(_e\)**\(\rightarrow\) elapsed backoff time
- **bo\(_r\)**\(\rightarrow\) residual backoff time

Fall 2017

© CS/ECE 439 Staff, University of Illinois
Backoff Interval

- When transmitting a packet, choose a backoff interval in the range $[0, CW]$
  - $CW$ is contention window
- Count down the backoff interval when medium is idle
  - Count-down is suspended if medium becomes busy
- When backoff interval reaches 0, transmit RTS
DCF Example

\[ \begin{align*}
\text{B1} &= 25 \\
\text{B2} &= 20
\end{align*} \]  \quad \begin{align*}
\text{B1} &= 5 \\
\text{B2} &= 15
\end{align*}

\[ \begin{align*}
\text{data} &\quad \text{wait} \\
\text{wait} &\quad \text{data} \\
\text{data} &\quad \text{wait}
\end{align*} \]  \quad \begin{align*}
\text{B2} &= 10
\end{align*}

\[ \text{CW} = 31 \]

B1 and B2 are backoff intervals at nodes 1 and 2.
Backoff Interval

- The time spent counting down backoff intervals is a part of MAC overhead

- Large CW
  - Large backoff intervals
  - Can result in larger overhead

- Small CW
  - Larger number of collisions (when two nodes count down to 0 simultaneously)
Backoff Interval

- The number of nodes attempting to transmit simultaneously may change with time
  - Some mechanism to manage contention is needed
- IEEE 802.11 DCF
  - Contention window CW is chosen dynamically depending on collision occurrence
Binary Exponential Backoff in DCF

- When a node fails to receive CTS in response to its RTS, it increases the contention window
  - $cw$ is doubled (up to an upper bound)

- When a node successfully completes a data transfer, it restores $cw$ to $CW_{\text{min}}$
  - $cw$ follows a sawtooth curve
Fairness Issue

- Many definitions of fairness plausible
- Simplest definition
  - All nodes should receive equal bandwidth
Fairness Issue

- Assume that initially, A and B both choose a backoff interval in range [0,31] but their RTSs collide
- Nodes A and B then choose from range [0,63]
  - Node A chooses 4 slots and B choose 60 slots
  - After A transmits a packet, it next chooses from range [0,31]
  - It is possible that A may transmit several packets before B transmits its first packet

Two flows
Fairness Issue

- Unfairness occurs when one node has backed off much more than some other node

MACAW Solution

- When a node transmits a packet
  - Append the cw value to the packet
  - all nodes hearing that CW value use it for their future transmission attempts
IEEE 802.11 Amendments

- **IEEE 802.11-1997:**
  - Originally 1 Mbit/s and 2 Mbit/s
  - 2.4 GHz RF and infrared (IR)

- **IEEE 802.11a:**
  - 54 Mbit/s, 5 GHz standard (2001)

- **IEEE 802.11b:**
  - Enhancements to support 5.5 and 11 Mbit/s (1999)

- **IEEE 802.11c:**
  - Bridge operation procedures;
  - Included in the IEEE 802.1D standard (2001)

- **IEEE 802.11d:**
  - International (country-to-country) roaming extensions (2001)

- **IEEE 802.11e:**
  - Enhancements: QoS, including packet bursting (2005)

- **IEEE 802.11g:**
  - 54 Mbit/s, 2.4 GHz standard (backwards compatible with b) (2003)

- **IEEE 802.11h:**
  - Spectrum Managed 802.11a (5 GHz) for European compatibility (2004)

- **IEEE 802.11i:**

- **IEEE 802.11j:**

- **IEEE 802.11-2007:**
  - Updated standard including a, b, d, e, g, h, i and j. (2007)
IEEE 802.11 Amendments

- **IEEE 802.11k:**
  - Radio resource measurement enhancements (2008)

- **IEEE 802.11n:**
  - Higher throughput improvements using MIMO (multiple input, multiple output antennas) (September 2009)

- **IEEE 802.11p:**
  - WAVE—Wireless Access for the Vehicular Environment (such as ambulances and passenger cars) (2010)

- **IEEE 802.11r:**
  - Fast BSS transition (FT) (2008)

- **IEEE 802.11s:**
  - Mesh Networking, Extended Service Set (ESS) (2011)

- **IEEE 802.11u:**
  - Improvements related to HotSpots and 3rd party authorization of clients, e.g. cellular network offload (2011)

- **IEEE 802.11v:**
  - Wireless network management (2011)

- **IEEE 802.11w:**
  - Protected Management Frames (2009)

- **IEEE 802.11y:**

- **IEEE 802.11z:**
  - Extensions to Direct Link Setup (DLS) (2010)
IEEE 802.11 Amendments

- **IEEE 802.11-2012:**
  - New release including k, n, p, r, s, u, v, w, y and z (2012)

- **IEEE 802.11aa:**
  - Robust streaming of Audio Video Transport Streams (2012)

- **IEEE 802.11ac:**
  - Very High Throughput < 6GHz
  - Potential improvements over 802.11n: better modulation scheme (expected ~10% throughput increase), wider channels (estimate in future time 80 to 160 MHz), multi user MIMO (2012)

- **IEEE 802.11ad:**
  - Very High Throughput 60 GHz (~ February 2014)

- **IEEE 802.11ae:**
  - Prioritization of Management Frames (2012)

- **IEEE 802.11af:**
  - TV Whitespace (February 2014)
In process amendments

- IEEE 802.11ah:
  - Sub 1 GHz sensor network, smart metering. (~March 2016)

- IEEE 802.11ai:
  - Fast Initial Link Setup (~November 2015)

- IEEE 802.11aj:
  - China Millimeter Wave (~June 2016)

- IEEE 802.11aq:
  - Pre-association Discovery (~July 2016)

- IEEE 802.11ak:
  - General Links (~ May 2016)

- IEEE 802.11mc:
  - Maintenance of the standard (~ March 2016)

- IEEE 802.11ax:
  - High Efficiency WLAN (~ May 2018)

- IEEE 802.11ay:
  - Enhancements for Ultra High Throughput in and around the 60 GHz Band (~ TBD)

- IEEE 802.11az:
  - Next Generation Positioning (~ TBD)
Other Technologies

- IEEE 802.15 Wireless PAN
- IEEE 802.15.1
  - Bluetooth certification
- IEEE 802.15.2
  - IEEE 802.15 and IEEE 802.11 coexistence
- IEEE 802.15.3
  - High-Rate wireless PAN (e.g., UWB, etc)
- IEEE 802.15.4
  - Low-Rate wireless PAN (e.g., ZigBee, WirelessHART, MiWi, etc.)
- IEEE 802.15.5
  - Mesh networking for WPAN
- IEEE 802.15.6
  - Body area network
- IEEE 802.16
  - Broadband Wireless Access (WiMAX certification)
Bluetooth

- Harald Blaatand “Bluetooth” II
  - King of Denmark 940-981 AC
- Runic stones in his capital city of Jelling
  - The stone’s inscription (“runes”) says:
    - Harald Christianized the Danes
    - Harald controlled the Danes
    - Harald believes that devices shall seamlessly communicate [wirelessly]
Classic Bluetooth

- Cable replacement
  - 2.4 GHz
  - FHSS over 79 channels (of 1MHz each), 1600 hops/s
  - 1Mbps
  - Coexistence of multiple piconets
  - 10 meters (extendible to 100 meters)
Bluetooth Radio

- **MA scheme**: Frequency hopping spread spectrum.
  - 2.402 GHz + k MHz, k=0, ..., 78
  - 1,600 hops per second.
  - 1 Mb/s data rate.
Bluetooth Network Topology

- Radio designation
  - Connected radios can be master or slave
  - Radios are symmetric (same radio can be master or slave)

- Piconet
  - Master can connect to 7 simultaneous or 200+ inactive (parked) slaves per piconet
  - Each piconet has maximum capacity (1 Mbps)
  - Unique hopping pattern/ID

- Scatternet
  - High capacity system
  - Minimal impact with up to 10 piconets within range
  - Radios can share piconets!
Bluetooth – Contention-free MAC

- Master performs medium access control
  - Schedules traffic through polling.

- Time slots alternate between master and slave transmission
  - Master-slave
    - Master includes slave address.
  - Slave-master
    - Only slave chosen by master in previous master-slave slot allowed to transmit.
    - If master has data to send to a slave, slave polled implicitly; otherwise, explicit poll.
Bluetooth Device Discovery - Inquiry

- Device discovery
  - Sends out an inquire, which is a request for nearby devices (within 10 meters)
  - Devices that allow themselves to be discoverable issue an inquiry response
  - Listeners respond with their address
  - Can take up to 10.24 seconds, after which the inquiring device should know everyone within 10 meters of itself
Bluetooth Device Discovery - Inquiry

Note that a device can be “Undiscordable”

After inquiry procedure, A knows about others within range

10 meters
Bluetooth Inquiry

- **Sender**
  - Inquiry sent on 16 different frequencies
  - 16 channel train
    - about 1.28 seconds per channel
    - One full 16 channel train takes 10ms

- **Receiver (device in standby mode)**
  - Scans long enough for an inquiring device to send the inquiry on 16 frequencies
  - Scan must be frequent enough to guaranteed wake up during a 16 channel train
    - Enters inquiry scan state at least once every 1.28 seconds, and stays in that state for 10ms
Bluetooth Inquiry - Reliability

**Challenge**
- Noisy channels
- Lost packets
  - Train scan is repeated up to 4 times for each train (10.24 seconds)
  - Designed to successfully communicate at least once with all devices within range
BLE Highlights

- Shared wireless channel
  - BLE operates in the 2.4 GHz ISM band with Wi-Fi and other technologies (phones, microwave ovens …)

- BLE = Bluetooth Low Energy
  - Improved discovery
  - Key component: Beacons
    - Tags send out advertising beacons (typ. dist 30ft)
    - Phones scan for beacons
BLE Highlights: Channel Use and Coexistence with Wi-Fi

- Separate advertising and connected channels
  - Key: Three disjoint advertising channels (37, 38, 39)
  - Positioned between Wi-Fi channels (1, 6, 11)
BLE Highlights: Advertising

- Advertising Tags
- Advertising Messages
  - Header + MAC Address + up to 31 Bytes of data
    - ~200 - 400 usec per packet
  - Two types: Non-scannable, Scannable
BLE Highlights: Advertising

- Advertising Tags
- Advertising Messages
  - Header + MAC Address + up to 31 Bytes of data
    - ~200 - 400 usec per packet
  - Two types: Non-scannable, Scannable
- Advertising Event
  - One advertising message sent out on each advertising channel (37, 38, 39)
BLE Highlights: Advertising

- Advertising Tags
- Advertising Messages
  - Header + MAC Address + up to 31 Bytes of data
    - ~200 - 400 usec per packet
  - Two types: Non-scannable, Scannable
- Advertising Event
  - One advertising message sent out on each advertising channel (37, 38, 39)
- Advertising Interval
  - One advertising event per advertising interval, e.g., every 1 sec or 100 msec
BLE Highlights: Tags Types - Scannable

- **Scannable Tags**
  - Tags send ADV_IND messages
  - Scanners respond with SCAN_REQ message
  - Tags respond with SCAN_RSP message
  - Up to 31 Bytes of extra data
  - Tags wait ~150 usec for a request after beacon
BLE Highlights: Advertising and Collisions

- If tags get synchronized, all advertising messages will collide
BLE Highlights: Tags Types - Non-Scannable

- Non-Scannable Tags
- Ex. gBeacon v3, iBeacon (?)
- Tags send ADV_NONCONN_IND messages
- Typically sent back-to-back
- Scanners listen, but do not respond
Collision avoidance

- Jitter advertising times
- `advDelay` is added on to the end of each advertising event
- `advDelay = rand [0,10ms]`
BLE Highlights: Scannable Tags

- One SCAN_RSP per channel per advertising event
BLE Highlights: Scannable Tags

- **ONLY accept SCAN_RSP if SCAN_REQ was sent to that tag on that channel during that advertising event.**
- **Some collision tolerance**
  - Any requesting scanner can receive a SCAN_RSP as long as one SCAN_REQ is received and the tag responds.
  - BUT, No SCAN_RSP if all SCAN_REQs collide.
BLE Highlights: SCAN_REQ
Collision Avoidance

- Scanner backoff procedure
  - Two parameters
    - backoffCount, upperLimit
  - On starting scan
    - upperLimit = 1, backoffCount = 1
  - Decrement backoffCount on receipt of ADV message
    - Only send SCAN_REQ if backoffCount == 0
  - Adapt upperLimit based on success or failure of receipt of SCAN_RSP
    - Reset backoffCount
    - backoffCount = rand (1, upperLimit)

backoffCount and upperLimit are reset whenever the scanner is turned on (i.e., after an idle time)
BLE Highlights: Low-level Scanning

- Scanners
- Scan for tags on sequential channels (37, 38, 39)
- Scan Interval (SI)
  - Time spent on a channel
BLE Highlights: Low-level Scanning

- **Scan Time**
  - Scan Int == Scan Window
    ⇒ Always on

- **Scanners**
  - Scan for tags on sequential channels (37, 38, 39)

- **Scan Interval (SI)**
  - Time spent on a channel

- **Scan Window (SW)**
  - Time spent scanning at beginning of Scan Interval

---

SI | SW
---|---
Scan Channel 37 | Scan Channel 38 | Scan Channel 39 | Scan Channel 37 | Scan Channel 38 | Scan Channel 39
BLE Highlights: Application-level Scanning

- Scanners
- Application Scan Time
  - > Tag Advertising Interval
BLE Highlights: Application-level Scanning

- **Scan Time**
  - 100% on Idle Time = 0
  - (Continuous scanning)
  - 10% on Idle Time = 10 * Scan Time

- **Scanners**
  - Application Scan Time
  - > Tag Advertising Interval

- **Application Idle Time**

---

Scan Time \[\rightarrow\] Idle Time \[\rightarrow\] Scan Time \[\rightarrow\] Idle Time
BLE Highlights: MAC Behavior

- No Carrier Sense
  - Tag does not listen for a clear channel before sending any message

- Minimal Contention Avoidance
  - Jitter length of advertising interval + rand [0, 10 ms]
  - Backoff for sending SCAN_REQ

- Other parameters
  - Inter-frame spacing: 150us (from spec)
  - Channel switching delay: 274us (from Nordic)
  - Scan Interval: 11.25ms (from spec/Nexus 5)
  - Scan Window: 11.25ms (continuous scanning)
Channelization of spectrum

- Typically, available frequency spectrum is split into multiple channels
- Some channels may overlap

![Channelization Diagram]

- 3 channels:
  - 26 MHz
  - 100 MHz
  - 915 MHz
  - 2.45 GHz

- 8 channels:
  - 200 MHz
  - 5.25 GHz

- 4 channels:
  - 150 MHz
  - 5.8 GHz

- Additional channels:
  - 250 MHz
  - 500 MHz
  - 24.125 GHz
  - 61.25 GHz
  - 1000 MHz
  - 122.5 GHz
Preventing Collisions Altogether

- Frequency Spectrum partitioned into several channels
  - Nodes within interference range can use separate channels
  - Now A can send to B while C sends to D without any interference!
  - Aggregate Network throughput doubles
Using Multiple Channels

- 802.11: AP’s on different channels
  - Usually manually configured by administrator
  - Automatic Configuration may cause problems

- Most cards have only 1 transceiver
  - Not Full Duplex: Cannot send and receive at the same time

- Multichannel MAC Protocols
  - Automatically have nodes negotiate channels
    - Channel coordination amongst nodes is necessary
    - Introduces negotiation and channel-switching latency that reduce throughput
Wireless Multihop Networks

- Vehicular Networks
  - Delay Tolerant (batch) sending over several hops carry data to a base station

- Common in Sensor Network for periodically transmitting data
  - Infrastructure Monitoring
    - E.g., structural health monitoring of the Golden Gate Bridge

- Multihop networking for Internet connection sharing
  - Routing traffic over several hops to base station connected to Internet
Multi-Hop Wireless Networks

In an ideal world …

Source

A  B  C  D

Destination
Multi-Hop Wireless Networks

In an ideal world …
Multi-Hop Wireless Networks

Reality check …

Problem 1
- Node A can’t use both links at the same time

Source
A
B
C
D
Destination

Shared channel
Send or receive, not both
Reality check...

Overlap at A
Hidden and exposed terminals

Problem 2
- Can’t use both links at the same time
Reality check …

RTS/CTS helps with contention but wastes resources

Problem 3
- Lots of contention for the channels
- Everyone wants to send
Reality check …

Problem 4

- TCP uses ACKS and bidirectional channels
- Even more contention!

Higher layer protocols
Bandwidth use in Ideal Scenarios

- A can only transmit to B; B to A and C; C to B and D; D to C
- Node A has an infinite supply of messages to send to D and there are no other messages in the network
Bandwidth use in Ideal Scenarios

- Time is slotted, message transmission takes exactly one slot
- During a slot, a node can
  - send a message, receive a message, remain silent
- If a node hears two or more simultaneous transmissions, a collision occurs
Bandwidth use in Ideal Scenarios

- Suppose a controller can command each node.
- What is the maximum rate (message/slot) at which messages can be transferred from A to D?
Bandwidth use in Ideal Scenarios

- Suppose a controller can command each node.
- What is the maximum rate (message/slot) at which messages can be transferred from A to D?
- Who can transmit when A is transmitting?
  - C
- When B?
  - None
- When C?
  - A
- Answer
  - 1 msg/2 slots
Bandwidth use in Ideal Scenarios

- Suppose now that A sends messages to B, and D sends messages to C.
- What is the combined maximum rate at which data messages can flow from A to B and from D to C?
Bandwidth use in Ideal Scenarios

Suppose now that A sends messages to B, and D sends messages to C.

What is the combined maximum rate at which data messages can flow from A to B and from D to C?

Answer

- A and D can transmit at the same time
- 2 msgs/slot
Bandwidth use in Ideal Scenarios

- Suppose now that A sends messages to B, and C sends messages to D.
- What is the combined maximum rate at which data messages can flow from A to B and from C to D?
Bandwidth use in Ideal Scenarios

Suppose now that A sends messages to B, and C sends messages to D.

What is the combined maximum rate at which data messages can flow from A to B and from C to D?

Answer

- A and C cannot transmit at the same time
- 1 msg/slot
Bandwidth use in Ideal Scenarios

- Now suppose for every data message sent from source to destination, the destination will send an ACK message back to the source.
- What is the maximum rate (message/slot) at which messages can be transferred from A to D?
Bandwidth use in Ideal Scenarios

- Now suppose for every data message sent from source to destination, the destination will send an ACK message back to the source.
- What is the maximum rate (message/slot) at which messages can be transferred from A to D?

Answer
- Each message requires two transmissions
- 1 msg/4 slots