Network Adaptors

AKA Network Interface Cards (NIC)
Network Adaptors

- Components
- Options for Use
 - Data Motion
 - Event Notification
- Potential performance bottlenecks
- Programming device drivers
Network Adaptors

Processor

Cache

Memory

memory bus (MBUS)

Network Adaptor

input/output bus (I/O BUS)

NETWORK

Communication?
Network Adaptors

- Adaptor Implements:
 - Encoding
 - Framing
 - Error detection
 - Medium access control

- Data Motion
 - Direct Memory Access (DMA)
 - Programmed Input/Output (PIO)
Network Adaptor: DMA

- Scatter
- Gather
Network Adaptor: DMA
Network Adaptor: PIO

Host memory | Adaptor memory | Adaptor memory | Host memory

Processor | Adaptor memory | Processor
Network Adaptor: PIO
Network Adaptor Use

- Data Motion
 - Direct Memory Access (DMA)
 - Processor free to do other things
 - Can be faster than memory copy through CPU
 - Start up cost
 - Programmed Input/Output (PIO)
 - Processor manages each access (loads/stores)
 - Faster than DMA for small amounts of data
Network Adaptor Use

- Event Notification
 - Hardware interrupts
 - Processor free to do other things
 - Events delivered immediately
 - State (register) save/restore expensive
 - Context switches more expensive
 - Event polling
 - Processor must periodically check
 - Events wait until next check
 - No extra state changes
Network Adaptor Performance

- Potential bottlenecks
 - Link capacity
 - I/O bus bandwidth
 - Memory bus bandwidth
 - Processor computing power
Programming Device Drivers

- Sample device driver in P&D
- Better examples in Linux
- Key Features
 - Memory-mapped control registers
 - Interrupt driven
 - Handler code must execute quickly
 - Logically concurrent with other processors
Direct Link Examples

- **Goal**
 - Explain real systems in terms of direct link topics
- **TCP transport layer**
- **IP network layer**
- **Two examples of data link/physical layers**
 - Ethernet
 - FDDI
- **merely case studies—no need to memorize details**
Example

- **TCP transport layer (reliable transmission)**
 - sliding window algorithm
 - adaptive window sizes
 - heuristics to address contention
 - aim at global optimum
 - see P&D 6.3 for details or wait until April

- **IP network layer (error detection)**
 - IP checksum
 - backs up stronger data link barriers (usually CRC)
Example

- 10 Mbps Ethernet (Xerox)
 - Encoding
 - Manchester
 - 10 Mbps, so transitions at 20 MHz
 - Error detection
 - Cyclic redundancy check (probably CRC-32)
 - Framing
 - Sentinel marks end-of-frame
 - Bit-oriented (similar to HDLC)
 - Variable length
 - Data-dependent length
 - Medium access control
 - CSMA/CD
10Mb Ethernet Frame Format

- **Preamble**: 7
- **Start of Frame**: 1
- **Destination Address**: 6
- **Source Address**: 6
- **Type**: 2
- **Body + Padding**: 46-1500
- **CRC**: 4
- **End of Frame**: 1
Ethernet Frame Components

- **Preamble + Start of Frame**
 - 7 bytes of 10101010, 1 byte of 10101011
 - Encoded as 10Mhz square wave
 - Synchronize receiver’s clock

- **Source and Destination Address**
 - Unique unicast Ethernet addresses
 - 20 bit manufacturer prefix + 28 bit ID
 - Multicast address: MSB set (80:00:...)
Ethernet Frame Components

- **Type**
 - 2 – bytes
 - Used to demultiplex higher layers

- **Body + Padding**
 - Minimum data size = 46 (minimum frame size = 64)
 - Data padded to minimum value
 - Maximum data size = 1500
Ethernet Frame Components

- CRC
 - 4 byte
- End of frame marker
 - 1 byte
- Total of 27 bytes header and trailer
- Xerox vs. 802.3
 - 802.3 replaces type with length
 - 802.3 drops EOF
IEEE 802.11 Frame Format

- **Types**
 - control frames, management frames, data frames
- **Sequence numbers**
 - important against duplicated frames due to lost ACKs
- **Addresses**
 - receiver, transmitter (physical), BSS identifier, sender (logical)
- **Miscellaneous**
 - sending time, checksum, frame control, data
IEEE 802.11 Data Frame Format

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Function</th>
<th>Format</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Frame Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Duration/ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Address 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Address 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Address 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Sequence Control</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Address 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2312</td>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CRC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Protocol version: 2

Type: 2

Subtype: 4

To DS: 1

From DS: 1

More Frag: 1

Retry: 1

Power Mgmt: 1

More Data: 1

WEP: 1

Order: 1
IEEE 802.11 Control Frame Format

- Acknowledgement
 - ACK
 - Frame Control: 2 bytes
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - CRC: 4 bytes

- Request To Send
 - RTS
 - Frame Control: 2 bytes
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - Transmitter Address: 6 bytes
 - CRC: 4 bytes

- Clear To Send
 - CTS
 - Frame Control: 2 bytes
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - CRC: 4 bytes