Network Adaptors

AKA Network Interface Cards (NIC)
Network Adaptors

- Components
- Options for Use
 - Data Motion
 - Event Notification
- Potential performance bottlenecks
- Programming device drivers
Network Adaptors

- Processor
- Cache
- Memory
- Network

memory bus (MBUS)

input/output bus (I/O BUS)

NETWORK

Communication?
Network Adaptors

Adaptor Implements:
- Encoding
- Framing
- Error detection
- Medium access control

Data Motion
- Direct Memory Access (DMA)
- Programmed Input/Output (PIO)
Network Adaptor: DMA

Scatter

Gather
Network Adaptor: DMA
Network Adaptor: PIO

![Diagram of network adaptor with processor, host memory, and adaptor memory connections]
Network Adaptor: PIO
Network Adaptor Use

Data Motion

- Direct Memory Access (DMA)
 - Processor free to do other things
 - Can be faster than memory copy through CPU
 - Start up cost

- Programmed Input/Output (PIO)
 - Processor manages each access (loads/stores)
 - Faster than DMA for small amounts of data
Network Adaptor Use

- Event Notification
 - Hardware interrupts
 - Processor free to do other things
 - Events delivered immediately
 - State (register) save/restore expensive
 - Context switches more expensive
 - Event polling
 - Processor must periodically check
 - Events wait until next check
 - No extra state changes
Network Adaptor Performance

- Potential bottlenecks
 - Link capacity
 - I/O bus bandwidth
 - Memory bus bandwidth
 - Processor computing power
Programming Device Drivers

- Sample device driver in P&D
- Better examples in Linux
- Key Features
 - Memory-mapped control registers
 - Interrupt driven
 - Handler code must execute quickly
 - Logically concurrent with other processors
Direct Link Examples

- **Goal**
 - Explain real systems in terms of direct link topics
- **TCP transport layer**
- **IP network layer**
- **Two examples of data link/physical layers**
 - Ethernet
 - FDDI
- merely case studies—no need to memorize details
Example

- TCP transport layer (reliable transmission)
 - sliding window algorithm
 - adaptive window sizes
 - heuristics to address contention
 - aim at global optimum
 - see P&D 6.3 for details or wait until April

- IP network layer (error detection)
 - IP checksum
 - backs up stronger data link barriers (usually CRC)
Example

10 Mbps Ethernet (Xerox)
- Encoding
 - Manchester
 - 10 Mbps, so transitions at 20 MHz
- Error detection
 - Cyclic redundancy check (probably CRC-32)
- Framing
 - Sentinel marks end-of-frame
 - Bit-oriented (similar to HDLC)
 - Variable length
 - Data-dependent length
- Medium access control
 - CSMA/CD
10Mb Ethernet Frame Format

- Preamble: 7 bytes
- Start of Frame: 1 byte
- Destination Address: 6 bytes
- Source Address: 6 bytes
- Type: 2 bytes
- Body + Padding: 46-1500 bytes
- CRC: 4 bytes
- End of Frame: 1 byte
Ethernet Frame Components

- **Preamble + Start of Frame**
 - 7 bytes of 10101010, 1 byte of 10101011
 - Encoded as 10Mhz square wave
 - Synchronize receiver’s clock

- **Source and Destination Address**
 - Unique unicast Ethernet addresses
 - 20 bit manufacturer prefix + 28 bit ID
 - Multicast address: MSB set (80:00:…)

Spring 2017 © CS 438 Staff, University of Illinois
Ethernet Frame Components

- **Type**
 - 2 – bytes
 - Used to demultiplex higher layers

- **Body + Padding**
 - Minimum data size = 46 (minimum frame size = 64)
 - Data padded to minimum value
 - Maximum data size = 1500
Ethernet Frame Components

- CRC
 - 4 byte
- End of frame marker
 - 1 byte
- Total of 27 bytes header and trailer
- Xerox vs. 802.3
 - 802.3 replaces type with length
 - 802.3 drops EOF
IEEE 802.11 Frame Format

- **Types**
 - control frames, management frames, data frames

- **Sequence numbers**
 - important against duplicated frames due to lost ACKs

- **Addresses**
 - receiver, transmitter (physical), BSS identifier, sender (logical)

- **Miscellaneous**
 - sending time, checksum, frame control, data
IEEE 802.11 Data Frame Format

<table>
<thead>
<tr>
<th>bytes</th>
<th>2</th>
<th>2</th>
<th>6</th>
<th>6</th>
<th>6</th>
<th>2</th>
<th>6</th>
<th>0-2312</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame Control</td>
<td>Duration/ID</td>
<td>Address 1</td>
<td>Address 2</td>
<td>Address 3</td>
<td>Sequence Control</td>
<td>Address 4</td>
<td>Data</td>
<td>CRC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>bits</th>
<th>2</th>
<th>2</th>
<th>4</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol version</td>
<td>Type</td>
<td>Subtype</td>
<td>To DS</td>
<td>From DS</td>
<td>More Frag</td>
<td>Retry</td>
<td>Power Mgmt</td>
<td>More Data</td>
<td>WEP</td>
</tr>
</tbody>
</table>
IEEE 802.11 Control Frame Format

- Acknowledgement
 - Ack
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - CRC: 4 bytes

- Request To Send
 - RTS
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - Transmitter Address: 6 bytes
 - CRC: 4 bytes

- Clear To Send
 - CTS
 - Duration: 2 bytes
 - Receiver Address: 6 bytes
 - CRC: 4 bytes