Chapter 2: Memory Hierarchy Design

Introduction

Caches
 Review of basics
 Advanced methods

Main Memory

Virtual Memory
Memory Hierarchies: Key Principles

Make the common case fast

Common → Principle of locality

Fast → Smaller is faster
Principle of Locality

Temporal locality

Spatial locality

Examples:
Principle of Locality

Temporal locality

 Locality in time

 If a datum has been recently referenced, it is likely to be referenced again

Spatial locality

Examples:
Principle of Locality

Temporal locality
 Locality in time
 If a datum has been recently referenced, it is likely to be referenced again

Spatial locality
 Locality in space
 When a datum is referenced, neighboring data are likely to be referenced soon

Examples:
Principle of Locality

Temporal locality

Locality in time

If a datum has been recently referenced, it is likely to be referenced again

Spatial locality

Locality in space

When a datum is referenced, neighboring data are likely to be referenced soon

Examples:

Temporal locality: Top of stack, Code in a loop

Spatial locality: Top of stack, Sequential instructions, Structure references
Smaller is Faster

Registers are fastest memory
 Smallest and most expensive
Static RAMs are faster than DRAMs
 10X faster
 10X less dense
DRAMs are faster than disk
 Electrical, not mechanical
 Disk is cheaper (currently)
 Disk is nonvolatile
<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Speed (x proc. clk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Disk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Memory Hierarchy**

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Speed (x proc. clk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registers</td>
<td>32 to 128 I and F</td>
<td>1X</td>
</tr>
<tr>
<td>Cache</td>
<td>10s of KB to 10s of MB</td>
<td>~1 to 10X on-chip, ~10X off-chip</td>
</tr>
<tr>
<td>Memory</td>
<td>GB to TB to ...</td>
<td>~100X</td>
</tr>
<tr>
<td>Disk</td>
<td>GB to TB to ...</td>
<td>~1000000X</td>
</tr>
</tbody>
</table>
Memory Hierarchy Terminology

Block
- Minimum unit that may be present
- Usually fixed length

Hit – Block is found in upper level

Miss – Not found in upper level

Miss ratio – Fraction of references that miss

Hit Time – Time to access the upper level

Miss Penalty
- Time to replace block in upper level, plus the time to deliver the block to the CPU
- Access time – Time to get first word
- Transfer time – Time for remaining words
Memory Hierarchy Terminology

Memory Address

Block-frame address: 0101010101010101011
Offset: 01010101

Block Names

Cache: Line
VM: Page
Memory Hierarchy Performance

Time is always the ultimate measure

Indirect measures can be misleading

MIPS can be misleading

So can Miss ratio

Average (effective) access time is better

\[t_{avg} = \]

Example:

\[t_{hit} = 1 \]
\[t_{miss} = 20 \]

miss ratio = .05

\[t_{avg} = \]

Effective access time is still an indirect measure
Memory Hierarchy Performance**

Time is always the ultimate measure

Indirect measures can be misleading

MIPS can be misleading

So can Miss ratio

Average (effective) access time is better

\[t_{\text{avg}} = t_{\text{hit}} + \text{miss ratio} \times t_{\text{miss}} \]

\[= t_{\text{cache}} + \text{miss ratio} \times t_{\text{memory}} \]

Example:

\[t_{\text{hit}} = 1 \]
\[t_{\text{miss}} = 20 \]
\[\text{miss ratio} = .05 \]

\[t_{\text{avg}} = \]

Effective access time is still an indirect measure
Memory Hierarchy Performance**

Time is always the ultimate measure

Indirect measures can be misleading

MIPS can be misleading

So can Miss ratio

Average (effective) access time is better

\[t_{\text{avg}} = t_{\text{hit}} + \text{miss ratio} \times t_{\text{miss}} \]

\[= t_{\text{cache}} + \text{miss ratio} \times t_{\text{memory}} \]

Example:

\[t_{\text{hit}} = 1 \]
\[t_{\text{miss}} = 20 \]
\[\text{miss ratio} = .05 \]

\[t_{\text{avg}} = 1 + .05 \times 20 = 2 \]

Effective access time is still an indirect measure
Poor question:

Q: What is a reasonable miss ratio?
A: 1%, 2%, 5%, 10%, 20% ???

A better question

Q: What is a reasonable t_{avg} ?

(assume $t_{cache} = 1$ cycle, $t_{memory} = 20$ cycles)

A: 1.2, 1.5, 2.0 cycles

What's a reasonable t_{avg} ?
Example**

Poor question:
Q: What is a reasonable miss ratio?
A: 1%, 2%, 5%, 10%, 20% ???

A better question
Q: What is a reasonable t_{avg}?
(assume $t_{cache} = 1$ cycle, $t_{memory} = 20$ cycles)
A: 1.2, 1.5, 2.0 cycles

What's a reasonable t_{avg}?
Depends upon base CPI
$t_{avg} = 2.0$ might be OK for base $CPI = 10$,
but terrible for base $CPI = 1.2$
Example, cont.

Rearranging terms in

\[t_{\text{avg}} = t_{\text{cache}} + \text{miss ratio} \times t_{\text{memory}} \]

to solve for miss ratios yields

\[\text{miss} = \frac{(t_{\text{avg}} - t_{\text{cache}})}{t_{\text{memory}}} \]

Reasonable miss ratios (percent) - assume \(t_{\text{cache}} = 1 \)

<table>
<thead>
<tr>
<th>(t_{\text{memory}}) (cycles)</th>
<th>(t_{\text{avg}}) (cycles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td>2</td>
<td>10.0</td>
</tr>
<tr>
<td>20</td>
<td>1.0</td>
</tr>
<tr>
<td>200</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Proportional to acceptable \(t_{\text{avg}} \) degradation

Inversely proportional to \(t_{\text{memory}} \)
Basic Cache Questions

Block placement

Where can a block be placed in the cache?

Block Identification

How is a block found in the cache?

Block replacement

Which block should be replaced on a miss?

Write strategy

What happens on a write?

Cache Type

What type of information is stored in the cache?
Block Placement

Fully Associative

Block goes in any block frame

Directmapped

Block goes in exactly one block frame

\[
(\text{Block frame \#}) \mod (\text{\# of blocks})
\]

Set Associative

Block goes in exactly one set

\[
(\text{Block frame \#}) \mod (\text{\# of sets})
\]

Example: Consider cache with 8 blocks, where does block 12 go?
Block Identification

How to find the block?

- Tag comparisons
- Parallel search to speed lookup
- Check valid bit

Example: Where do we search for block 12?
Example Cache

Incoming Address
- tag
- index
- offset

Decode

A Cache Block (Frame)
- valid
- tag
- data

Compare Incoming & Stored Tags
and Select Data Word

Data Word

Hit/Miss
Block Replacement

Which block to replace on a miss?

Least recently used (LRU)
- Optimize based on temporal locality
- Replace block unused for longest time
- State updates on nonMRU misses

Random
- Select victim at random
- Nearly as good as LRU, and easier

Firstin Firstout (FIFO)
- Replace block loaded first

Optimal
- ?
Block Replacement

Which block to replace on a miss?

Least recently used (LRU)
- Optimize based on temporal locality
- Replace block unused for longest time
- State updates on non-MRU misses

Random
- Select victim at random
- Nearly as good as LRU, and easier

First in First out (FIFO)
- Replace block loaded first

Optimal
- Replace block used furthest in time
Write Policies

Writes are harder
 Reads done in parallel with tag compare; writes are not
 Thus, writes are often slower
 (but processor need not wait)

On hits, update memory?
 Yes writethrough (storethrough)
 No writeback (storein, copyback)

On misses, allocate cache block?
 Yes writeallocate (usually used w/ writeback)
 No nowriteallocate (usually used w/ writethrough)
Write Policies, cont.

WriteBack

- Update memory only on block replacement
- Dirty bits used so clean blocks can be replaced without updating memory

Traffic/Reference =

WriteThrough

- Update memory on each write
- Write buffers can hide write latency (later)
- Keeps memory uptodate (almost)

Traffic/Reference =
Write Policies, cont.**

WriteBack

Update memory only on block replacement
Dirty bits used so clean blocks can be replaced without updating memory

\[\text{Traffic/Reference} = \frac{\text{fractDirty}}{} \times \frac{\text{miss}}{\text{miss}} \times B \]

Traffic/Reference = \(\frac{1}{2} \times 0.05 \times 4 = 0.10\)

Less traffic for larger caches

WriteThrough

Update memory on each write
Write buffers can hide write latency (later)

Keeps memory up to date (almost)

Traffic/Reference = \(B\)
Write Policies, cont.

WriteBack

Update memory only on block replacement

Dirty bits used so clean blocks can be replaced without updating memory

\[
\text{Traffic/Reference} = \text{fractDirty} \times \text{miss} \times B
\]

Traffic/Reference = \(\frac{1}{2} \times 0.05 \times 4 = 0.10 \)

Less traffic for larger caches

WriteThrough

Update memory on each write

Write buffers can hide write latency (later)

Keeps memory uptodate (almost)

\[
\text{Traffic/Reference} = \text{fractionWrites} = 0.20
\]

Traffic independent of cache parameters
Cache Type

Unified (mixed)
- Less costly
- Dynamic response
- Handles writes into Istream

Separate Instruction & Data (split, Harvard)
- 2x bandwidth
- Place closer to I and D ports
- Can customize
- Poorman's associativity
- No interlocks on simultaneous requests

Caches should be split if simultaneous instruction and data accesses are frequent (e.g., RISCs)
Consider building (a) 16K byte I & D caches, or (b) a 32K byte unified cache.

Let t_{cache} is one cycle, t_{memory} is 10 cycles.

(a) I_{miss} is 5 %, D_{miss} is 6 %, 75 % of references are instruction fetches.

$$t_{avg} = 1 + 0.75 \times 0.05 \times 10 +$$

(b) miss ratio is 4 %

$$t_{avg} =$$
Consider building (a) 16K byte I & D caches, or (b) a 32K byte unified cache.

Let t_{cache} is one cycle, t_{memory} is 10 cycles.

(a) I_{miss} is 5 %, D_{miss} is 6 %, 75 % of references are instruction fetches.

$$t_{avg} = (1 + 0.05 \times 10) \times 0.75$$

$$+ (1 + 0.06 \times 10) \times 0.25 = 1.5$$

(b) miss ratio is 4 %

$$t_{avg} = 1 + 0.04 \times 10$$
Cache Type Example**

Consider building (a) 16K byte I & D caches, or (b) a 32K byte unified cache.

Let t_{cache} is one cycle, t_{memory} is 10 cycles.

(a) I_{miss} is 5 %, D_{miss} is 6 %, 75 % of references are instruction fetches.

 $t_{avg} = (1 + 0.05 \times 10) \times 0.75$

 $+ (1 + 0.06 \times 10) \times 0.25 = 1.5$

(b) miss ratio is 4 %

 $t_{avg} = 1 + 0.04 \times 10 = 1.4$
Consider building (a) 16K byte I & D caches, or (b) a 32K byte unified cache.

Let t_{cache} is one cycle, t_{memory} is 10 cycles.

(a) I_{miss} is 5 %, D_{miss} is 6 %, 75 % of references are instruction fetches.

$$t_{avg} = (1 + 0.05 \times 10) \times 0.75$$
$$+ (1 + 0.06 \times 10) \times 0.25 = 1.5$$

(b) miss ratio is 4 %

$$t_{avg} = 1 + 0.04 \times 10 = 1.4 \text{ WRONG!}$$

$$t_{avg} = 1.4 + \text{cycles lost to interference}$$

Will cycles lost to interference < 0.1?

Not for “RISC” machines!
A Miss Classification (3Cs or 4Cs)

Cache misses can be classified as:

Compulsory (a.k.a. cold start)
- The first access to a block

Capacity
- Misses that occur when a replaced block is rereferenced

Conflict (a.k.a. collision)
- Misses that occur because blocks are discarded because of the setmapping strategy

Coherence (shared memory multiprocessors)
- Misses that occur because blocks are invalidated due to references by other processors
Fundamental Cache Parameters

Cache Size
 How large should the cache be?

Block Size
 What is the smallest unit represented in the cache?

Associativity
 How many entries must be searched for a given address?
Cache size is the total capacity of the cache

- Bigger caches exploit temporal locality better than smaller caches
- But are *not always* better

Why?
Cache size is the total capacity of the cache

Bigger caches exploit temporal locality better than smaller caches

But are *not always* better

Too large a cache size

Smaller means faster \(\Rightarrow\) bigger means slower

Access time may degrade critical path

Too small a cache size

Don't exploit temporal locality well

Useful data is prematurely replaced
Block Size

Block (line) size is the data size that is both
(a) associated with an address tag, and
(b) transferred to/from memory

Advanced caches allow different (a) & (b)

Problem with too small blocks

Problem with large blocks
Block Size**

Block (line) size is the data size that is both
(a) associated with an address tag, and
(b) transferred to/from memory

Advanced caches allow different (a) & (b)

Too small blocks
- Don't exploit spatial locality well
- Don't amortize memory access time well
- Have inordinate address tag overhead

Too large blocks cause
Block Size

Block (line) size is the data size that is both
(a) associated with an address tag, and
(b) transferred to/from memory

Advanced caches allow different (a) & (b)

Too small blocks
✓ Don't exploit spatial locality well
 Don't amortize memory access time well
 Have inordinate address tag overhead

Too large blocks cause
 Unused data to be transferred
 Useful data to be prematurely replaced
Block Size Example

Block size that minimizes t_{avg} is often smaller than the block size that minimizes miss ratio!

Let the main memory take 8 cycles before delivering two words per cycle. Then:

$$t_{memory} = t_{access} + B \times t_{transfer} = 8 + B \times 1/2$$

where B is block size in words

(a) block size 8 words with miss ratio 5%
$$t_{memory} =$$
$$t_{avg} =$$

(b) block size 16 words with miss ratio 4%
$$t_{memory} =$$
$$t_{avg} =$$
Block Size Example**

Block size that minimizes t_{avg} is often smaller than the block size that minimizes miss ratio!

Let the main memory take 8 cycles before delivering two words per cycle. Then:

$$t_{memory} = t_{access} + B \times t_{transfer} = 8 + B \times 1/2$$

where B is block size in words

(a) block size 8 words with miss ratio 5 %

$$t_{memory} = 8 + 8 \times 1/2 = 12$$

(b) block size 16 words with miss ratio 4 %

$$t_{memory} =$$

$$t_{avg} =$$
Block Size Example**

Block size that minimizes t_{avg} is often smaller than the block size that minimizes miss ratio!

Let the main memory take 8 cycles before delivering two words per cycle. Then:

$$t_{memory} = t_{access} + B \times t_{transfer} = 8 + B \times \frac{1}{2}$$

where B is block size in words

(a) block size 8 words with miss ratio 5%
$$t_{memory} = 8 + 8 \times \frac{1}{2} = 12$$
$$t_{avg} = 1 + 0.05 \times 12 = 1.60$$

(b) block size 16 words with miss ratio 4%
$$t_{memory} = $$
$$t_{avg} = $$
Block size that minimizes t_{avg} is often smaller than the block size that minimizes miss ratio!

Let the main memory take 8 cycles before delivering two words per cycle. Then:

$$t_{\text{memory}} = t_{\text{access}} + B \times t_{\text{transfer}} = 8 + B \times 1/2$$

where B is block size in words

(a) block size 8 words with miss ratio 5 %

$$t_{\text{memory}} = 8 + 8 \times 1/2 = 12$$
$$t_{\text{avg}} = 1 + 0.05 \times 12 = 1.60$$

(b) block size 16 words with miss ratio 4 %

$$t_{\text{memory}} = 8 + 16 \times 1/2 = 16$$
$$t_{\text{avg}} =$$
Block Size Example**

Block size that minimizes t_{avg} is often smaller than the block size that minimizes miss ratio!

Let the main memory take 8 cycles before delivering two words per cycle. Then:

$$t_{memory} = t_{access} + B \times t_{transfer} = 8 + B \times \frac{1}{2}$$

where B is block size in words

(a) block size 8 words with miss ratio 5 %

$$t_{memory} = 8 + 8 \times \frac{1}{2} = 12$$
$$t_{avg} = 1 + 0.05 \times 12 = 1.60$$

(b) block size 16 words with miss ratio 4 %

$$t_{memory} = 8 + 16 \times \frac{1}{2} = 16$$
$$t_{avg} = 1 + 0.04 \times 16 = 1.64$$
Set Associativity

Partition cache block frames & memory blocks in equivalence classes (usually w/ bit selection)

Number of sets, s, is the number of classes

Associativity (set size), n, is the number of block frames per class

Number of block frames in the cache is \(s \times n \)

Cache Lookup (assuming read hit)

Select set

Associatively compare stored tags to incoming tag

Route data to processor
Associativity, cont.

Typical values for associativity

1 -- directmapped
n = 2, 4, 8, 16 -- nway setassociative
All blocks -- fullyassociative

Larger associativities
Lower miss ratios
Less variance
Intuitively satisfying

Smaller associativities
Lower cost
Faster access (hit) time (perhaps)
Associativity that minimizes t_{avg} can be smaller than associativity that minimizes miss ratio!

Consider DM & SA caches w/ same t_{memory}.

$$\Delta t_{cache} = t_{cache}(SA) - t_{cache}(DM) > 0$$
$$\Delta miss = miss(SA) - miss(DM) < 0$$

$t_{avg}(SA) < t_{avg}(DM)$ only if

$$t_{cache}(SA) + miss(SA) \times t_{memory} < t_{cache}(DM) + miss(DM) \times t_{memory}$$

$$\Delta t_{cache} + \Delta miss \times t_{memory} < 0$$

E.g.,

(a) Assuming $\Delta t_{cache} = 0 \Rightarrow$ SA better

(b) $\Delta miss = 1/2\%$, $t_{memory} = 20$ cycles $\Rightarrow \Delta t_{cache} < 0.1$ cycle