Chapter 1: Fundamentals of Computer Design (Part 2)

What is computer architecture?
Why study computer architecture?

Common principles
- Performance
 - What is performance: latency, throughput
 - The performance equation
 - Measuring performance
 - Improving performance: parallelism, locality, Amdahl’s law
- Cost
- Power
- Reliability

What is Performance?
Two Metrics
- Latency (or response time or execution time)
- Throughput (or bandwidth)

Performance (Cont.)
Definition: X is n% faster than Y if

\[
\frac{\text{Execution Time}_Y}{\text{Execution Time}_X} = 1 + \frac{n}{100}
\]

Example: X = 1 minute, Y = 2 minutes
X is 100% faster than Y

Key Performance Equation

\[
CPU_{low} = \frac{\text{instructions}}{\text{program}} \times \frac{\text{cycles}}{\text{instruction}} \times \frac{\text{time}}{\text{cycle}}
\]

Instructions per program (path length)
- ISA and compiler
Cycles per instruction (CPI)
- ISA and organization (e.g., cache misses)
Time per cycle (clock time, cycle time)
- Organization and hardware
Measuring Performance

MIPS, MFLOPS don't mean much

Benchmarks

Real programs
 Representative of real workload
 Only way to characterize performance
 SPEC92 → SPEC95 → SPEC CPU2000 → CPU2006
 SPECFS, SPECWeb, SPECjbb, SPECvirt_Sc2010, TPC

Kernels
 "Representative" program fragments
 Often not representative of full applications
 EEMBC for embedded systems
 Toy benchmarks and synthetic benchmarks
 Don't mean much

Improving Performance – Basic Principles

Parallelism

Locality

Focus on common case – Amdahl’s law

Amdahl’s Law

(Or why the common case matters most)

Let

\[
\text{Speedup} = \frac{\text{new rate}}{\text{old rate}} = \frac{\text{old latency}}{\text{new latency}}
\]

Consider an enhancement \(x\) that speeds up fraction \(f_x\) of a task by \(S_x\)

\[
\text{Speedup}_{\text{overall}} = \frac{\text{old latency}}{\text{new latency}} = \frac{(1 - f_x) \times \text{old latency} + f_x \times S_x \times \text{old latency}}{(1 - f_x) \times \text{old latency} + f_x / S_x \times \text{old latency}}
\]

Amdahl’s law gives

\[
\text{Speedup}_{\text{overall}} = \frac{1}{(1 - f_x) + f_x / S_x}
\]

Amdahl’s Law, cont.

Example: \(f_x = 95\%\) and \(S_x = 1.10\)

\[
\text{Speedup}_{\text{overall}} = \frac{1}{(1 - 0.95) + (0.95/1.10)} = 1.094
\]

Example: \(f_x = 5\%\) and \(S_x = 10\)

\[
\text{Speedup}_{\text{overall}} = \frac{1}{(1 - 0.05) + (0.05/10)} = 1.047
\]

Example: \(f_x = 5\%\) and \(S_x = \infty\)

\[
\text{Speedup}_{\text{overall}} = \frac{1}{(1 - 0.05) + (0.05/\infty)} = 1.052
\]
Amdahl's Law Corollary

Since $S_\infty \to \infty$ implies

\[\text{Speedup}_{\text{overall}} = \frac{1}{(1-f_\infty) + (f_\infty/\infty)} \]

For all real speedups:

\[\text{Speedup}_{\text{overall}} = \frac{1}{1-f_\text{x}} \]

Or make the common case fast

An application?

<table>
<thead>
<tr>
<th>f_x</th>
<th>$1/(1-f_\text{x})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>1.01</td>
</tr>
<tr>
<td>2%</td>
<td>1.02</td>
</tr>
<tr>
<td>5%</td>
<td>1.05</td>
</tr>
<tr>
<td>10%</td>
<td>1.11</td>
</tr>
<tr>
<td>20%</td>
<td>1.25</td>
</tr>
<tr>
<td>50%</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Cost

Cost is very important in most real designs
- But usually hard to quantify for the architect

Costs change over time
- Learning curve lowers manufacturing costs
- Technology improvements lower costs

Focus on IC costs - bigger price variable
Cost vs. price
Die Floorplan

Figure 1.14 Floorplan of Core 7 die in Figure 1.13 on left with close-up of floorplan of second core on right.

Integrated Circuit Cost

\[
\text{Cost of IC} = \frac{\text{Cost of Die} + \text{Cost of Testing} + \text{Cost of Packaging}}{\text{Final Test Yield}}
\]

\[
\text{Cost of Die} = \frac{\text{Cost of Wafer}}{\text{Dies per Wafer} \times \text{Die Yield}}
\]

\[
\text{Dies per Wafer} = \frac{\pi \times (\text{Wafer Diameter}/2)^2}{\text{Die Area}}
\]

(Correction factor for Edge Effects)

\[
\text{Die Yield} = \frac{1}{1 + \text{Defects per unit area} \times \text{Die Area}^{\alpha}}
\]

\(\alpha = 11.5\) to 15.5 for 40nm in 2010

- large dependence of cost on die area
- Cost per die grows roughly as the square of the die area
- Price only loosely related to cost

Power

\[\text{Power} = \text{Dynamic power} + \text{Static power}\]

\[\text{Energy} = \text{Power} \times \text{Time}\]

\[\text{Dynamic Power} \propto \text{Capacitance} \times \text{Voltage}^2 \times \text{Frequency}\]

\[\text{Static power} = \text{Static current} \times \text{Voltage}\]

Reliability

- Many sources of unreliability
 - Soft errors due to radiation, hard errors due to wearout, …
- Common metrics
 - Mean time to failure – MTTF
 - For exponentially distributed time to failure
 - Define failures in time or FITs
 -FIT = 1/MTTF
 -FIT of system = Sum of FITs of components
- Common solution