AMD Zen
Rohin, Vijay, Brandon
Outline

1. History and Overview
2. Datapath Structure
3. Memory Hierarchy
4. Zen 2 Improvements
History and Overview
AMD History

- IBM production too large, forced Intel to license their designs to 3rd parties
- AMD fills the gap, produces clones for 15ish years - legal battles ensued
- K5 first in-house x86 chip in 1996
- Added more features like out of order, L2 caches, etc
- Current CPUs are Zen*

tomshardware.com/picturestory/713-amd-cpu-history.html
Zen Brand

- Performance desktop and mobile computing
 - Athlon
 - Ryzen 3, Ryzen 5, Ryzen 7, Ryzen 9
 - Ryzen Threadripper
- Server
 - EPYC

https://en.wikichip.org/wiki/amd/microarchitectures/zen
Zen History

- Aimed to replace two of AMD’s older chips
 - Excavator: high performance architecture
 - Puma: low power architecture

https://en.wikichip.org/wiki/amd/microarchitectures/zen#Block_Diagram
Zen Architecture

- Quad-core
- Fetch 4 instructions/cycle
- Op cache 2k instructions
- 168 physical integer registers
- 72 out of order loads
- Large shared L3 cache
- 2 threads per core

https://www.slideshare.net/AMD/amd-epyc-microprocessor-architecture
Datapath Structure
Fetch

- **Decoupled branch predictor**
 - Runs ahead of fetches
 - Successful predictions help latency and memory parallelism
 - Mispredictions incur power penalty

- **3 layer TLB**
 - L0: 8 entries
 - L1: 64 entries
 - L2: 512 entries

Branch Predictor

- Perceptron: simple neural network
- Table of perceptrons, each a vector of weights
- Branch address used to access perceptron table
- Dot product between weight vector and branch history vector
Perceptron Branch Predictor

- ~10% improve prediction rates over *gshare* predictor - (2, 2) correlating predictor
- Can utilize longer branch histories
 - Hardware requirements scale linearly whereas they scale exponentially for other predictors

Hashed Perceptron Branch Predictor

- Combines concepts behind global predictors and path-based predictors
- Hashes segments of histories to access different weight tables
- Sum weights and apply threshold to predict

DOI:https://doi.org/10.1145/1089008.1089011
Decide

- 2k instruction Op cache
- Can handle 4 instructions per clock cycle (including instructions generating two micro-ops)

Op cache

- a.k.a. Micro-op cache or μop cache
- Variable-length complex instructions are often decoded into smaller fixed-length micro-operations (μops)
- If an instruction has been decoded and cached in the Op cache, can save time and power
- Micro-Tags determine whether to access instruction from Op cache or L1
- 2048 μops in Zen 1
- 4096 μops in Zen 2
Execute

- Two separate units for Integer and Floating Points
- Each unit has:
 - Register file with register renaming
 - Schedulers
 - Several execution units

- Both units have access to a Retire Queue
 - Similar to a Reorder Buffer
 - 192 entries for Zen 1
 - 244 entries for Zen 2
 - Retires 8 instructions per cycle
Integer Execute

- **Register file**
 - Zen 1: 168 registers of 64 bits
 - Zen 2: 180 registers of 64 bits

- **Scheduling Queues**
 - 14 entries each
 - 4 ALQs
 - 2 AGQs

- **6 issue per cycle**
 - 4 ALUs
 - 2 AGUs (Address Generation Units)

Floating Point Execute

- Floating point register file
 - Zen 1: 160 vector registers of 128 bits
 - Zen 2: 160 vector registers of 256 bits

Load/Store

- Load Queue: 44 entries
 - AGU depth of 28
 - = 72 inflight loads at a time
- Store Queue
 - Zen 1: 44 entries
 - Zen 2: 48 entries
- L1 data cache
 - 32K
 - 8 way

Zen - SMT

- AMD's first Simultaneous Multithreading
- Allows instructions from multiple threads to be issued in the same cycle
- Queues round-robin
- Tagged means marked ahead of time - UI needs preferential treatment
- Algorithmic uses internal analysis of access patterns, etc

https://www.anandtech.com/show/11170/the-amd-zen-and-ryzen-7-review-a-deep-dive-on-1800x-1700x-and-1700/10
Memory Hierarchy
Cache Hierarchy

- **L1**
 - Write-back
 - Separate I and D caches
 - 8-way set associative

- **L2**
 - Write-back
 - 2x size of Intel Skylake and Broadwell
 - 8 way set associative
 - $\approx 1.414x$ chance of cache hit

- **L3**
 - Zen 1: 2 MB per core
 - Zen 2: 4 MB per core
 - 16 way set associative
 - Acts as a victim cache for L1/L2 victims

Visit [this link](https://www.anandtech.com/show/10578/amd-zen-microarchitecture-dual-schedulers-micro-op-cache-memory-hierarchy-revealed/2) for more details.
Zen 2 Improvements
Improvements

- 2x L3 cache size
- 2x L1 load/store bandwidth
- 2x Op cache size
- +15% IPC
- Hardware mitigations to Spectre vulnerability
- 256-bit datapath as opposed to 128-bit
- Infinity Fabric 2 (I/O) - 2.3x transfer rate per link (25 GT/s, up from ~10.6 GT/s)
- Floating Point Bandwidth - 256 bit (improvement over 128 bit); allows faster physics simulation and faster inline memcpy and memset for all instructions using 256 bit intrinsic registers