
CS433: Computer Architecture – Fall 2020 

Homework 7 

Total Points: Undergraduates (29 points), Graduates (42 points) 

Undergraduate students should only solve the first 4 problems. Graduate students should 

solve all problems. 

This homework is only for practice. Please do not submit solutions. They will not be 

graded. 

 

Problem 1 [13 points] 

This problem concerns MOESI, an invalidation based snooping cache coherence protocol, for 

bus-based shared-memory multiprocessors with a single level of cache per processor. The 

MOESI protocol has five states. A block starting at address Addr can be in one of the following 

states in cache C:  

• Modified: The block is present only in cache C and the data in the cache is dirty or 

modified (i.e., it reflects a more recent version than the copy in memory).  

• Owned: The block is present in cache C and may also be present in other caches. The 

memory may not have an up-to-date copy of this block. The block is said to be owned by 

cache C and C must service the requests of other caches to this block since memory may 

not have an up-to-date copy.  

• Exclusive: The block is present in a single cache (C) but is clean (i.e., memory has an up-

to-date copy of the block).  

• Shared: The block is present in cache C and possibly present in other caches.  

• Invalid: The block is not valid in cache C (space for the block may or may not be 

currently allocated in this cache).  

If the cache has a block in Owned state, then it services any requests to that block from other 

processors. Assume that the memory does NOT update its copy even if the request is a read by 

some other cache and the Owner cache has put the block on the bus. Hence, the owner cache 

remains in Owned state and continues to service other requests, until the block is replaced from 

its cache. Also assume that the only way to reach the Owned state is from the Modified or 

Exclusive state, when some other cache issues a read request for that block. 

If a cache C has a block in exclusive or modified state, then it is responsible for servicing any 

requests to that block from other processors. If the request is a read, then the cache C transitions 

to the Owned state, and memory does NOT update its copy. 

On replacement of a block in Owned or Modified state, the block is sent to memory, and 

memory resumes responsibility for servicing subsequent requests to that block. Replacement of a 

block in Exclusive state is similar, except that the block need not be sent to memory (since 

memory already has a copy). 



Assume that after a cache performs a transaction on the bus, there is a mechanism for it to know 

whether other caches have a copy of the requested block or not at that time. This enables the 

cache to determine whether to transition to exclusive state. 

Part A [2 points] 

Consider a Block B in Owned state in the cache of processor P. Can B be in a non-invalid state 

in any other processor’s cache? If yes, then what are the possible (non-invalid) states in which B 

could be in any of the other caches? If no, then explain why not. 

Solution: 

Yes. B can be in Shared state in other caches even when it is in Owned state in P. This scenario 

results when P has the block in Modified state and another processor does a read on B. The only 

possible non-invalid state of B in other caches is S. 

Grading: 1 point for recognizing that B may be non-invalid in another processor’s cache. 1 point 

for the correct possible state. 

 

 

Part B [6 points] 

This part concerns the response of the cache of processor i to bus transactions initiated by the 

cache of processor j for a block that starts at address B (referred to as block B below). Fill out the 

following rows for the state transition table for the cache of processor i, showing the next state 

for block B in the cache and any action taken by the cache. Each entry should be filled out as: 

Next State/Action (e.g., S/Send block to memory) where 

Next State = M, O, E, S, or I 

Action = Send block to memory, Send block to cache, Send block to cache and memory, or 

No action 

Note: If an entry is not possible (i.e., the system cannot be in such a state), write “Not Possible”. 

 

Current state of 

block B in cache of 

processor i 

Read of block B by 

cache of processor j 

 

Invalidate of block 

B by cache of 

processor j (with no 

read request for the 

block) 

Read + Invalidate of 

block B by cache of 

processor j 

M O/Send block to j Not Possible I/Send Block to j 

O O/Send block to j I/No Action I/Send Block to j 

 

Grading: 1 point for each entry. Partial credit is awarded if at least the next state is computed 

correctly. For both of the rightmost cells, deduct ½ point each if answer is “I/send block to j and 

memory”. 



Part C [5 points] 

Consider the following sequence of operations by two processors for a block that starts at 

address B. Determine the state of that block in the caches of both the processors after each 

operation in the sequence for the MOESI protocol. Both caches are initially empty and all lines 

are in the I state. The table below is provided to help organize your answer. 

No Operation MOESI 

P1 P2 

1 P1 reads B E* I 

2 P1 writes B M I 

3 P2 writes B I M 

4 P1 reads B S O 

5 P1 writes B M I 

6 P2 reads B O S 

 

*Since P1 performed a read and has the only cached copy, it will transition to E instead of S. 

Grading: ½ point per entry. 

  



Problem 2 [6 points] 

compare-and-swap(R1, R2, L) is an atomic synchronization primitive which atomically 

compares the value in memory location L with R1, and if and only if they are equal, exchanges 

the values in R2 and L. compare-and-swap(R1, R2, L) can be used to efficiently emulate many 

other primitives. 

Part A [2 points] 

Implement an atomic test-and-set on memory address L in assembly using compare-and-

swap(R1, R2, L) as the only atomic primitive. Let L = 1 when the lock is taken and L = 0 when it 

is free, and these will be the only values present at L. You may use any registers you like. 

Solution: 

R1  0 

R2  1 

C&S R1, R2, L 

Grading: 2 points for correct solution. 

Part B [2 points] 

Implement the test-and-test-and-set semantics on memory address L in assembly using compare-

and-swap as the only atomic primitive. Let L = 1 when the lock is taken, and L = 0 when it is 

free. You can use any registers you like as well as ordinary loads and stores. Include any 

instructions needed to ensure that the operation eventually completes successfully, as if you are 

actually trying to acquire a lock. 

Solution: 

R2  1 

LOCK: R1  LOAD(L) 

 BNEZ R1, LOCK 

 C&S R1, R2, L 

 BNEZ R2, LOCK 

Grading: 2 points for each correct solution. 1 point if the C&S is used correctly but the loop 

back branch on failure is not included or is incorrect. 

Part C [2 points] 

Use compare-and-swap to implement an atomic fetch-and-increment(R1, L) in assembly, which 

atomically copies the old value in L to R1 and then increments the value in L by 1. Again, you 

can use any registers you like well as ordinary loads and stores. Include any instructions needed 

to ensure that the operation eventually completes successfully; i.e., the increment must be 

guaranteed to occur atomically. 

 

 



Solution: 

FINC: R1  LOAD(L) 

R2  R1 + 1 

C&S R1, R2, L 

BNEQ R1, R2, FINC 

Grading: 2 points for each correct solution. 1 point if the C&S is used correctly but the loop 

back branch on failure is not included or is incorrect. 

 

Problem 3 [4 points] 

For this problem, assume sequential consistency. Consider the following code fragments 

executed on two processors: 

Initially P = Q = R = S = 0 

P1  P2 

P = 5  L = Q 

Q = 12  M = P 

R = 8  N = S 

S = 6  O = R 

Part A [2 points] 

The processors execute instructions independent of each other. Thus, the order of execution of 

instructions cannot be determined a priori if no constraint is placed on the execution of the 

instructions. What synchronization is required to ensure that all of P1’s instructions are to be 

executed before any of P2’s instructions, as given above? Ensure your solution makes clear the 

constituent memory operations used for the synchronization; i.e., don’t insert just a call to a 

function or library without the code for that function/library. Unnecessarily inefficient solutions 

will not get full credit. 

Solution: 

Initially P = Q = R = S = 0 

Initially V = 0 

P1  P2 

  while (V == 0); 

P = 5  L = Q 

Q = 12  M = P 

R = 8  N = S 

S = 6  O = R 

V = 1 

Grading: 2 points for correct solution. 1 point partial credit for barrier after last instruction of P1 

and before first instruction of P2. 



Part B [2 points] 

Suppose we don’t care about the relative order of execution of the sets of instructions, but we 

want atomicity in execution; i.e., we want all instructions of one processor to complete before 

any instructions are executed in the other processor. What synchronization is required to ensure 

this? 

Solution: 

This can be achieved by placing the code fragments between lock and unlock operations. These 

operations can be implemented using Test&Set or any other technique but must all be to the 

same location. 

P1  P2 

Lock(x) Lock(x) 

P = 5  L = Q 

Q = 12  M = P 

R = 8  N = S 

S = 6  O = R 

Unlock(x) Unlock(x) 

Grading: 2 points for correct solution. 

 

Problem 4 [6 points] 

This problem depends on your solution to part A of problem 3. You will get credit for this 

problem only if part A of problem 3 is correct. 

Part A [3 points] 

On a sequentially consistent system, what values can L, M, N, and O have at the end of 

execution for the code in your solution of problem 3, part A? You must explain your answer for 

full credit. 

Solution: 

L = 12, M = 5, N = 6, O = 8. On a sequentially consistent processor, we can assume that P2’s 

reads of P, Q, R, and S won’t occur until its while loop terminates; i.e., until P2 sees the value 1 

for V. Once P2 sees the value 1 for V, we know that P1’s write to V has occurred and so we can 

assume that P1’s writes to P, Q, R, and S are complete. We are therefore guaranteed that P2’s 

reads of P, Q, R, and S will see the values written to those variables by P1. 

Grading: 1 point for correct values of L, M, N, and O. 2 points for the correct explanation. 

Part B [3 points] 

On a system that is not known to be sequentially consistent, what possible values can variables 

L, M, N, and O have at the end of execution, for the code in your solution of problem 3 part A? 

You must explain your answer for full credit. 



Solution: 

L = 0 or 12, M = 0 or 5, N = 0 or 6, O = 0 or 8. Since the system is not known to be sequentially 

consistent, it is possible that some or all of P2’s reads of P, Q, R, S actually occur before its 

while loop terminates, or some or all of P1’s writes to P, Q, R, S actually occur after P1’s write 

to V. So P2 is not guaranteed to see P1’s writes to P, Q, R, S, and may see only a subset of those 

writes. 

Grading: 2 points for listing all possible correct values of L, M, N, and O (1 point if only the 

values 0 are listed). 1 point for a correct explanation which should include some mention of how 

the value 0 could be obtained for any of these variables. 

  



NOTE: ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 

Problem 5 [13 points] 

In the discussion of the barrier semantics in the lecture, a common parallel programming pattern 

was described where all processors produce data during one phase of a computation, and that 

data is consumed by many (or all) processors during the next phase. The “barrier” is used as 

synchronization so that the consumers of the data in phase n+1 are guaranteed to see the data that 

was produced in phase n. 

An example program with such a pattern is molecular dynamics simulation. The outermost loop 

iterates over discrete timesteps covering the period of time covered by the simulation. In each 

timestep, we need to do two things: 

(1) For each particle (or molecule) in the simulated system, we compute the force on the particle 

exerted by every other particle in the system. The force between two particles is a function of the 

distance between the two particles (i.e., a function of the positions of the two particles, as 

computed during the previous time step - see below). The total force on a given particle is the 

sum of the forces generated by all particles within the cutoff distance of the given particle. 

(2) After the force on a particle is computed, its new position is computed using the force 

computed above and its old position computed in the previous timestep. The new positions are 

then used as input for the next timestep. 

Part A [5 points] 

How would you parallelize the computation for each timestep? Specifically, indicate how the 

computation is divided among N processors, which shared-memory variables are read and 

written by a given processor in different phases of the program, and where does what 

synchronization appear in the program and for what purpose. You can describe your algorithm in 

words and do not have to give code. 

Solution: 

Each processor computes the forces and positions of 1/N particles. [1 point] 

Each timestep consists of two phases. In the first phase, for each of its particles, a processor 

reads the positions of all other particles and computes the force for that particle. [1 point] 

In the second phase, for each of its particles, a processor reads that particle's computed force and 

position and computes the new position. [1 point] 

A barrier is required at the end of each phase. The first barrier ensures that all processors read all 

the old positions before the positions are updated in the next phase. The second barrier ensures 

that all the positions are updated before they are read in the next timestep to calculate the forces 

on other particles. [2 points] 

 

 



Part B [8 points] 

Consider a shared-memory multiprocessor system where each processor has a private L1 cache 

and all processors and memory are connected by a bus. Suppose the L1 caches are magically of 

infinite size. Assume an MSI cache coherence protocol. Consider the 20th timestep in the 

simulation. What will be the state of all the shared variables in a processor's cache at the end of 

each synchronization event in this timestep? Which accesses will result in bus traffic in this 

timestep? 

Solution: 

At the end of the first barrier, the forces of all particles assigned to this processor will be in M 

state. All positions of all particles will be in S state. [2 points] 

At the end of the second barrier, the above forces will remain in M state, the positions of the 

particles assigned to this processor will be in M state, and the positions of all other particles will 

be in I state. [2 points] 

In the first phase, the reads of the positions of all particles assigned to other processors will result 

in misses. [2 points] 

In the second phase, the writes to the positions of the particles will result in invalidations. [2 

points] 

If a different correct algorithm is used in part A, then give appropriate credit with 4 points 

allocated for correct state after synchronization and 4 points for correct bus traffic. If the 

algorithm in part A is incorrect, then assign partial credit on case by case basis (e.g., 0 credit if 

the algorithm in Part A is completely broken). 


