
CS433: Computer Architecture – Fall 2020 

Homework 6 

Total Points: Undergraduates (24 points), Graduates (34 points) 

Undergraduate students should only solve the first 4 problems. Graduate students should 

solve all problems. 

Due Date: December XX, 2020 at 10:00 pm CT (See course information slides for more 

details) 

Directions: 

• All students must write and sign the following statement at the end of their homework 

submission. "I have read the honor code for this class in the course information 

handout and have done this homework in conformance with that code. I understand 

fully the penalty for violating the honor code policies for this class." No credit will be 

given for a submission that does not contain this signed statement. 

• On top of the first page of your homework solution, please write your name and 

NETID, your partner’s name and NETID, and whether you are an undergrad or grad 

student. 

• Name your homework solution file as firstname_lastname_hw6.pdf 
• Please show all work that you used to arrive at your answer. Answers without 

justification will not receive credit. Errors in numerical calculations will not be 

penalized. Cascading errors will usually be penalized only once. 

• See course information slides for more details. 
 

Problem 1 [6 points] 

Consider a tiny system with virtual memory. Physical addresses are 8 bits long, but only 2^7 = 

128 bytes of physical memory is installed, at physical addresses 0 up to 127. Pages are 2^4 = 16 
bytes long. Virtual addresses are 10 bits long. An exception is raised if a program accesses a virtual 
address whose virtual page has no mapping in the page table, or is mapped to a physical page 

outside of installed physical memory. 

Here are the contents of main memory. To find the physical address of a byte, read the least 
significant digit from the column label and the most significant digit from the row label. For 
example, the shaded byte in the second row is at physical address 0x12. All entries are in 

hexadecimal. 

 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0x0_ 4e 65 76 65 72 20 67 6f 6e 6e 61 20 67 69 76 65 

0x1_ 20 79 6f 75 20 75 70 0a 4e 65 76 65 72 20 67 6f 

0x2_ 6e 6e 61 20 6c 65 74 20 79 6f 75 20 64 6f 77 6e 

0x3_ 0a 4e 65 76 65 72 20 67 6f 6e 6e 61 20 72 75 6e 

0x4_ 20 61 72 6f 75 6e 64 20 61 6e 64 20 64 65 73 65 

0x5_ 72 74 20 79 6f 75 0a 4e 65 76 65 72 20 67 6f 6e 

0x6_ 6e 61 20 6d 61 6b 65 20 79 6f 75 20 63 72 79 0a 

0x7_ 4e 65 76 65 72 20 67 6f 6e 6e 61 20 73 61 79 20 

 



 

Here is the page table. The virtual page number in the left column is mapped to the physical page 

number in the second column. Virtual page numbers are listed in binary. 

Virtual page Physical page 

000 0x2 

001 0x4 

010 0x1 

011 0x5 

100 0x4 

101 0x7 

110 0x9 

 

[1 point for each question] 

A) List the four bytes in the word beginning at physical address 0x34. 
0x65, 0x72, 0x20, 0x67. 
 

B) How many virtual addresses refer to the first byte of the shaded word in row 0x2_? List 
them. 

Only virtual page 000 maps to physical page 2, so there is only 1 address, 0x04. 
 

C) How many virtual addresses refer to the first byte of the shaded word in row 0x4_? List 

them. 
Virtual pages 1 and 4 map to physical page 4, so there are 2 addresses, 0x18 and 0x48. 

 
D) How many virtual addresses refer to the first byte of the shaded word in row 0x6_? List 

them. 

No virtual pages map to physical page 6, so there are no addresses that refer to those bytes. 
 

E) What data is returned if the program loads a word from virtual address 0x5C (01011100)? 

Data is returned from the word at physical address 0x7C: 0x73, 0x61, 0x79, 0x20 (bytes 
or address sufficient). 

 
F) What is the result if the program loads a word from virtual address 0x64 (01100010)? 

An exception, because virtual page 6 is mapped to physical page 9, which is outside the 

range of installed memory. (Exception is sufficient) ½ credit for saying bytes are loaded 

from physical address 0x94. 

 

 

 

 



 

Problem 2 [4 points] 

Consider a system with the following processor components and policies: 

• A direct-mapped L1 data cache of size 4KB (4 x 2^10 bytes ) and block size of 16 bytes, 
indexed and tagged using physical addresses, and using a write-allocate, write-back policy 

• A fully-associative data TLB with 4 entries and an LRU replacement policy 

• Physical addresses of 32 bits, and virtual addresses of 40 bits 

• Byte addressable memory 

• Page size of 1MB 

 

Part A [2 points] 

Which bits of the virtual address are used to obtain a virtual to physical translation from the TLB? 

Explain exactly how these bits are used to make the translation, assuming there is a TLB hit. 

Solution: 

The virtual address is 40 bits long. Because the virtual page size is 1MB = 2^20 bytes, and memory 

is byte addressable, the virtual page offset is 20 bits. Thus, the first 40-20=20 bits are used for 
address translation at the TLB. Since the TLB is fully associative, all of these bits are used for the 

tag; i.e., there are no index bits. When a virtual address is presented for translation, the hardware 
first checks to see if the 20 bit tag is present in the TLB by comparing it to all other entries 
simultaneously. If a valid match is found (i.e., a TLB hit) and no protection violation occurs, the 

page frame number is read directly from the TLB. 

Grading: 1 point for noting that the first 20 bits are used for address translation. 1 point for noting 

that all of these bits are used as a tag and compared against the tag bits in all entries in the TLB. 

 

Part B [2 points] 

Which bits of the virtual or physical address are used as the tag, index, and block offset bits for 
accessing the L1 data cache? Explicitly specify which of these bits can be used directly from the 

virtual address without any translation. 

Solution: 

Since the cache is physically indexed and physically tagged, all of the bits for accessing the cache 
must come from the physical address. However, since the lowest 20 bits of the virtual address form 

the page offset and are therefore not translated, these 20 bits can be used directly from the virtual 
address. The remaining 12 bits (of the total of 32 bits in the physical address) must be used after 

translation. Since the block size is 16 bytes = 2^4 bytes, and memory is byte addressable, the 
lowest 4 bits are used as block offset. Since the cache is direct mapped, the number of sets is 
4KB/16 bytes = 2^8. Therefore, 8 bits are needed for the index. The remaining 32-8-4 = 20 bits 

are needed for the tag. As mentioned above, the index and offset bits can be used before translation 

while the tag bits must await the translation for the 12 uppermost bits. 



 

  20 bits    8 bits    4 bits 

Tag Index Offset 

 

Grading: 1 point for correctly specifying the tag, index, and offset bits. 1/2 point for specifying 

any two correctly, no points for specifying only one of them correctly. 

1 point for correctly specifying that the lowest 20 bits do not need translation and the upper 12 bits 

must be translated. 

 

Problem 3 [6 points] 

Consider a hypothetical memory hierarchy with the following parameters. Main memory is 
interleaved on a word basis with four banks and a new bank access can be started every cycle. It 

takes 8 processor clock cycles to send an address from the cache to main memory; 50 cycles for 
memory to access a block; and an additional 25 cycles to send a word of data back from memory 

to the cache. The memory bus width is 1 word. There is a single level of data cache with a miss 
rate of 2% and a block size of 4 words. Assume 25% of all instructions are data loads and stores. 
Assume a perfect instruction cache; i.e., there are no instruction cache misses. If all data loads and 

stores hit in the cache, the CPI for the processor is 1.5. 

Part A [2 points] 

Suppose the above memory hierarchy is used with a simple in-order processor (as in Appendix C) 

and the cache blocks on a load or store until it completes. Compute the miss penalty and resulting 

CPI for such a system. 

Solution: 

Miss penalty = 8 + 50 + 25*4 = 158 cycles 

CPI = 1.5 + (0.25* 0.02 * 158) = 2.29 

Grading: 1 point for miss penalty and 1 point for CPI. 

Part B [2 points] 

Suppose we now replace the processor with an out-of-order processor and the cache with a non-

blocking cache that can have multiple load and store misses outstanding. Such a configuration can 
overlap some part of the miss penalty, resulting in a lower effective penalty as seen by the 

processor. Assume that this configuration effectively reduces the miss penalty (as seen by the 
processor) by 20%. What is the CPI of this new system? What is the speedup over the system in 

Part A? 

 



 

Solution: 

Effective miss penalty = 0.80 * 158 = 126 cycles 

CPI = 1.5 + (0.25 * .02 * 126) = 2.13 

Speedup over the system in part A is 2.29/2.13 = 1.08 

Grading: 1 point for showing miss penalty and CPI calculation. 1 point for speedup statement. 

Part C [2 points] 

Start with the system in Part A for this part. Suppose now we double the bus width and the width 

of each memory bank. That is, it now takes 50 cycles for memory to access the block as before, 
and the additional 25 cycles now send a double word of data back from memory to the cache. What 

is the miss penalty now? What is the CPI? Is this system faster or slower than that in Part B? 

Solution: 

Miss penalty = 8 + 50 + 25*2 = 108 cycles 

CPI = 1.5 + (0.25 * .02 * 108) = 2.04 

This system is slightly faster than that in part B. 

Grading: 1 point for showing miss penalty and CPI calculation. 1 point for speedup statement. 

 

Problem 4 [8 points]  

In a virtually indexed, physically tagged cache, the cache set to search is selected using only bits 

of the virtual address, so virtual-to-physical address translation can proceed in parallel with reading 

tags for comparison. 

In the simplest design, the associativity of the cache is large enough so that the cache index and 
offset bits together fit entirely into the page offset bits. However, page size remains relatively fixed 
with architectures while cache size grows with semiconductor technology so this may require a 

high associativity. 

Part A [2 points] 

If a processor has 4KB pages and a 128KB level 1 cache, what is the minimum associativity 

required to use the simple virtually-indexed, physically tagged optimization? 

A cache with a high associativity requires examining many ways on each access. This takes more 

time (even if comparisons are done in parallel) and uses more energy on each cache access, so we 

might want to keep associativity smaller. 

 



 

Solution: 

The total number of index+offset bits needed to address a direct mapped 128KB cache is lg 2^17 

= 17. Only 12 of these fit within the offset bits for a 4KB page. Therefore, 5 are not in the page 
offset. If the cache associativity is 2^5, then the number of bits for index+offset will be reduced 

by 5, thus getting all the bits within the page offset. Therefore, we need an associativity of 32. 

Grading: There are several ways to solve this problem, including directly applying the formula 

discussed in class. All reasonable approaches will get full credit. 

Part B [2 points] 

Suppose a cache simply forms a longer index using a few of the least significant bits from the 

virtual page number. Describe a page table and access pattern where this cache will return incorrect  

data. 

Solution: 

If multiple virtual pages are mapped to the same physical page, say virtual pages 0 and 1 map to 
physical page 0, then two virtual addresses can map to the same physical address, but have different 
indices. If a program writes 12 value to one address, then 25 to the other, then reads from the first 

address it will receive a 12 from the cache, but should see 25. 

Grading: 1 point for setting up a page table with aliasing. 1 point for an access pattern that 

demonstrates the error. 

Part C [4 points] 

Assume the cache must always work correctly, but accesses as in Part B are rare enough that a 

performance cost is acceptable for only those accesses. Consider a processor with virtual memory 
and a 4KB page size, and a 128KB level 1 cache with 16 byte lines and 4 way associativity. 
Describe a design where the normal cache hits always see the access penalty of a 4-way associative 

cache but the misses and problem accesses (as in Part B) may incur a larger access penalty. Assume 
that it takes as long to do an address translation as it takes to access the cache in the normal case. 

Assume a TLB with zero miss rate. Any cache hit which uses the same virtual page number as the 

previous access to that cache line must be handled as a normal quick access. 

Solution: 

To look up a cache line, it takes the 11-bit index from bits 4-14 of the address, which includes the 
low 3 bits of the virtual page number. It reads tags from the 4 ways in this set, and compares them 
with tag bits from the physical address, after the read and address translation is complete. If these 

bits match we have a hit in the fast case. If these bits do not match, then we need to check the other 
7 sets corresponding to possible other values for the first 3 bits, in case this data was previously 

accessed through a different, aliased virtual address. If the data is found , we have a cache hit in 
the slow case and the data is copied into the first set we checked and invalidated in other sets, to 
ensure another access through this virtual address will hit quickly. If the data is not found, we have 



a cache miss and the line must be requested from the next largest level in the memory hierarchy. 

Once the line is returned, it is stored in the set which was searched first. 

Grading: 1 point for ensuring the cache never has multiple valid lines for a single physical address. 

1 point for accessing only 4 lines on a fast hit. 2 points for correct operation. 

  



NOTE: ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 

Problem 5 [10 points] 

A student comes to you with the following graph. The student is performing experiments by 

varying the amount of data accessed by a certain benchmark. The only thing the student tells you 
of the experiments is that their system uses virtual memory, a data TLB, only one level of data 

cache, and the data TLB maps a much smaller amount of data than can be contained in the data 
cache. You may assume that there are no conflict misses in the caches and TLB. Further assume 

that instructions always fit in the instruction TLB and an L1 instruction cache. 
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Part A [7 points] 

Give an explanation for the shape of the curve in each of the regions numbered 1 through 7. 

Region in 

graph 

Explanation 

1 Execution time slowly increases (performance decreases) due to increasing 
data size but remains at a roughly similar level. 

2 At this point, the TLB overflows and execution time sharply increases to 
handle the increased TLB misses. 

3 Execution time again slowly increases due to increasing data size and 
plateaus at a higher level than before due to overhead from TLB misses. 

4 At this point, the data cache overflows, causing a high frequency of cache 
misses and execution time again sharply increases. 

5 Execution time again slowly increases due to increasing data size and 

plateaus at a high level due to overhead from retrieving data directly from 
main memory due to cache misses. 

6 Execution time again sharply increases due to physical memory filling up and 

thrashing occurring between disk and physical memory. 

7 Execution time is very high due to overhead from TLB misses, cache misses 
and virtual memory thrashing. It is slowly increasing due to increasing data 

size. 

 

Part B [3 points] 

From the graph, can you make a reasonable guess at any of the following system properties? If so, 
what are they? If not, why not? Explain your answers. (Note: your answers can be in terms of a, 

b, and c). 

(i) Number of TLB entries 

(ii) Page size 

(iii) Physical memory size 

(iv) Virtual memory size 

(v) Cache size 

 

Solution: 

There is no reasonable guess for page size and virtual memory size. There is also no reasonable 

guess for the number of TLB entries since it depends on the page size. 

It is acceptable if you guess that the cache size is b KB and the physical memory size is c KB, 
since these are the points at which the execution time shows significant degradations. However, 
these quantities are actually only upper bounds, since the actual size of these structures depends 



on the temporal and spatial reuse in the access stream. (The actual size depends on a property 

known as the working set of the application.) 

Grading: 1/3 point for (i), (ii), and (iv). 1 point for each of (iii) and (v). 


