
 

CS433: Computer Architecture – Fall 2020 

Homework 2 

Total Points: 35 points 

All students should solve all problems 

Due Date: September 24, 2020 at 10:00 pm CT (See course information slides for more details) 

Directions: 

• All students must write and sign the following statement at the end of their homework 

submission. "I have read the honor code for this class in the course information handout and 

have done this homework in conformance with that code. I understand fully the penalty for 

violating the honor code policies for this class." No credit will be given for a submission that 

does not contain this signed statement. 

• On top of the first page of your homework solution, please write your name and NETID, your 

partner’s name and NETID, and whether you are an undergrad or grad student. 

• Name your homework solution file as firstname_lastname_hw2.pdf 
• Please show all work that you used to arrive at your answer. Answers without justification 

will not receive credit. Errors in numerical calculations will not be penalized. Cascading 

errors will usually be penalized only once. 

• See course information slides for more details. 
 

Problem 1 [5 points] 

Consider two different machines. The first has a single cycle datapath (i.e., a single stage, non-pipelined 

machine) with a cycle time of 15 ns. The second is a pipelined machine with 5 pipeline stages and a cycle 

time of 3ns. 

Part (A) [1 point] 

What is the speedup of the pipelined machine versus the single cycle machine assuming there are no stalls? 

Solution: The speedup is 15 𝑛𝑠
3 𝑛𝑠⁄ = 5. 

Grading: 1 point for the correct answer. No deduction for calculation errors. 

Part (B) [2 points] 

What is the speedup of the pipelined machine versus the single cycle machine if the pipeline stalls 1 cycle 

for 25% of the instructions? 

Solution: 𝑁𝑒𝑤 𝐶𝑃𝐼 = 1 + .25 × 1 = 1.25 

Since the number of instructions is the same, the speedup is 
𝐶𝑃𝐼𝑜𝑙𝑑×𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒𝑜𝑙𝑑

𝐶𝑃𝐼𝑛𝑒𝑤×𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒𝑛𝑒𝑤
=

1×15 𝑛𝑠

1.25×3 𝑛𝑠
= 4. 



Grading: 1 point for correct new CPI. 1 point for correct speedup equation. No deduction for calculation 

errors. 

Part (C) [2 points] 

Now consider a 4 stage pipeline machine with a cycle time of 3.1 ns. Again, assuming no stalls, is this 

implementation faster or slower than the original 5 stage pipeline? Explain your answer. 

Solution: The 5 stage machine is faster. This is because it has a smaller cycle time, which results in a faster 

overall execution time (since there are no stalls, they both have the same CPI). 

Grading: 1 point for correct answer. 1 point for explanation. 

 

Problem 2 [4 points] 

Consider two different 5-stage pipeline machines (IF ID EX MEM WB). The first machine resolves 

branches in the ID stage, uses one branch delay slot, and can fill 80% of the delay slots with useful 

instructions. The second machine resolves branches in the EX stage and uses a predict-not-taken scheme. 

Assume that the cycle times of the machines are identical. Given that 35% of the instructions are branches, 

25% of branches are taken, and that stalls are due to branches alone, which machine is faster? To get any 

credit, you must justify your answer. 

 

Solution: For the first machine, a cycle is wasted every time a delay slot can’t be filled i.e. for 20% of the 

branches. Thus, 𝐶𝑃𝐼 = 1 + 0.35 × .20 × 1 = 1.07. 

For the second machine, two cycles are wasted due to the unknown target address for 25% of the branches. 

Thus, 𝐶𝑃𝐼 = 1 + .35 × .25 × 2 = 1.175. 

Therefore, the first machine is faster. 

Grading: 2 points for the CPI of the first machine. 2 points for the CPI of the second machine. No 

deduction for calculation errors. 

 

Problem 3 [10 points] 

 

Consider the following loop. 

𝑙𝑜𝑜𝑝: 

1.  𝐴𝐷𝐷𝐼 𝑅2, 𝑅2, #1 

2.  𝐿𝐷 𝑅4, 0(𝑅3) 

3.  𝐿𝐷 𝑅5, 4(𝑅3) 

4.  𝐴𝐷𝐷 𝑅6, 𝑅4, 𝑅5 

5.  𝑀𝑈𝐿 𝑅4, 𝑅6, 𝑅7 



6.  𝑆𝑈𝐵𝐼 𝑅3, 𝑅3, #8 

7.  𝐵𝑁𝐸𝑍 𝑅2, 𝑙𝑜𝑜𝑝 

8.  𝐴𝐷𝐷 𝑅11, 𝑅12, 𝑅13 

Part (A) [4 points] 

Identify all data dependencies (potential data hazards) in the given code snippet. Assume the loop takes 

exactly one iteration to complete. Specify if the data dependence is RAW, WAW or WAR. 

Solution: 

1) 1 → 7 (RAW) 

2) 2 → 4 (RAW) 

3) 2 → 5 (WAW) 

4) 2 → 6 (WAR) 

5) 3 → 4 (RAW) 

6) 3 → 6 (WAR) 

7) 4 → 5 (RAW) 

8) 4 → 5 (WAR) 

NOTE: There is no WAR or RAW from 7 → 1 because the loop only executes for a single iteration. 

Grading: ½ point for identifying a dependence correctly per pair of instructions. ½ point for identifying 

all such dependences. -½ point for RAR. 

Part (B) [2 points] 

Assume a 5-stage pipeline (IF ID EX MEM WB) without any forwarding or bypassing hardware, but with 

support for a register read and write in the same cycle. Also assume that branches are resolved in the ID 

stage and handled by stalling the pipeline. All stages take 1 cycle. Again, the loop takes one iteration to 

complete. Which dependencies from part (a) cause stalls? How many cycles does the loop take to execute? 

Solution: Stalls are caused by dependencies 5 and 7 above. The loop takes 17 cycles. The code would take 

12 cycles if there were no stalls (5 cycles for the first instruction, then 1 cycle each for the next 7 

instructions). The stalls from dependencies 5 and 7 add two cycles each, and the branch flush adds another 

cycle. Total = 12 + 2 + 2 + 1 = 17. 

Grading: 1 point for listing dependencies, 1 point for computing number of cycles. 

Part (C) [2 points] 

Assume that the pipeline now supports full forwarding and bypassing. Furthermore, branches are handled 

as predicted-not-taken. As before, the loop takes one iteration to complete. Which dependencies from part 

(a) still cause stalls and why? How many cycles does the loop take to execute now? 

Solution: Dependency 5 still causes a stall because the LD instruction doesn’t load the required data till 

the end of its MEM cycle, whereas the MUL instruction needs that data in the beginning of that particular 

cycle. 



The loop takes 13 cycles. The code would take 12 cycles without stalls (same as described above), and the 

stall from dependency 5 adds 1 cycle (forwarding reduces the number of stall cycles from 2 to 1). 

Therefore, total cycles = 12 + 1 = 13. 

Grading: 1 point for listing dependency and reason, 1 point for computing number of cycles. 

Part (D) [2 points] 

If the pipeline from part (c) instead uses a branch delay slot, how would you schedule the instructions in 

the loop to minimize stalls? For this part, assume the loop takes multiple iterations to complete. Explain 

your answer. 

Solution: Place/reschedule instruction 6 after instruction 7. Since instruction 6 must always execute, the 

branch delay slot will always have a useful instruction, regardless of the direction of the branch. 

Furthermore, instruction 6 will not cause stalls in instructions 2 and 3 of the next cycle because of the 

forwarding path. 

Another option is to place/reschedule instruction 5 after instruction 7. Instruction 5 is independent of 

instruction 6, so moving it does not violate any dependencies. Moreover, instruction 5 must always execute, 

so the branch delay slot will always have a useful instruction, regardless of the direction of the branch. 

Finally, putting instruction 5 in the branch delay slot will not cause stalls in instructions 2 or 3 of the next 

cycle. 

Grading: 1 point for correct answer. 1 point for explanation. 

 

Problem 4 [16 points] 

For this problem, we will explore a pipeline for a register-memory architecture. The architecture has two 

instruction formats: a register-register format and a register-memory format. In the register-memory 

format, one of the operands for an ALU instruction could come from memory. 

There is a single memory-addressing mode (offset + base register). The only non-branch register-memory 

instructions available have the format: 

Op Rdest, Rsrc1, Rsrc2 

or 

Op Rdest, Rsrc1, MEM 

where Op is one of the following: Add, Subtract, And, Or, Load (in which case Rsrc1 is ignored), or Store. 

Rsrc1, Rsrc2, and Rdest are registers. MEM is a (base register, offset) pair. 

Branches compare two registers and, depending on the outcome of the comparison, move to a target 

address. The target address can be specified as a PC-relative offset or in a register (with no offset). Assume 

that the pipeline structure of the machine is as follows: 

IF RF ALU1 MEM ALU2 WB 

The first ALU stage is used for effective address calculation for memory references and branches. The 

second ALU stage is used for operations and branch comparison. RF is both decode and register-fetch 



stage. Assume that when a register read and a register write of the same register occur in the same cycle, 

the write data is forwarded. 

Part (A) [2 points] 

In this pipeline, performance is improved when sequences of 

LOAD R1, 4(R6) 

ADD R2, R2, R1 

can be replaced with 

ADD R2, 4(R6) 

If 30% of all instructions are loads, what percentage of these loads must be eliminated for this new pipeline 

to have at least the same performance as the old pipeline? Adding the new instruction increases clock cycle 

time by 10% but does not affect CPI. 

Solution: 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝑜𝑙𝑑 = # 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 × 𝐶𝑃𝐼 × 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝑛𝑒𝑤 = ((1 − 0.3 × 𝐿) × # 𝑜𝑓 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠) × 𝐶𝑃𝐼 × ((1 + .1) × 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒) 

𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝑛𝑒𝑤 ≤ 𝐶𝑃𝑈 𝑡𝑖𝑚𝑒𝑜𝑙𝑑 

(1 − 0.3 × 𝐿) × 1 × 1.1 ≤ 1 ⇒ 0.3 × 𝐿 ≥ 1 − 1
1.1⁄ ⇒ 𝐿 ≥ 0.303 

At least 30.3% of the loads must be eliminated. 

Grading: 1 point for correctly setting up CPU time equation. 1 point for setting up and solving inequality. 

No deduction for calculation errors. 

Part (B) [4 points] 

Find the number of adders, counting any adder or incrementor, needed to minimize the number of structural 

hazards. Justify why you need this number of adders. 

Solution: We need three adders – one for each of the two ALUs and one to increment the PC. 

Grading: 1 point for each adder, 1 bonus point for the correct answer. Take off ½ a point if additional 

number of adders/incrementers are provided along with the correct answer. 

Part (C) [4 points] 

Find the number of register read and write ports and memory read and write ports needed to minimize the 

number of structural hazards. Justify why you need this number of ports for the register file and memory. 

Solution: The register file is used in two pipeline stages; we will have to sum the ports required by both 

stages to find out how many ports we must have to avoid structural hazards. In the RF stage, we need up 

to three reads due to the branch instructions which can have three register operands. In the WB stage, we 

need one write. Therefore, we need three read ports and one write port for the register file. 

Memory is accessed in two stages, IF for reading the next instruction from memory and MEM, which can 

either read or write to memory. So we need two read ports and one write port for memory. 



Grading: 2 points for register file ports (½ point for each port), 2 points for memory ports (½ point for 

each port, ½ point bonus for correct answer). Take off ½ point if additional number of ports are provided 

along with correct answer. 

Part (D) [3 points] 

Will data forwarding from the ALU2 stage to any of ALU1, MEM, or ALU2 stages reduce or avoid stalls? 

Explain your answer for each stage. 

Solution: The result of ALU2 could be used in the ALU1 stage or the ALU2 stage, and so forwarding to 

those stages is beneficial. There are instances where ALU2 to MEM forwarding is required to avoid a stall. 

E.g., 

ADD R1 R2 R3 

Some other Instruction 

STORE R1 0(R4) 

If there is forwarding from ALU2 to MEM then we will avoid a stall. 

Grading: 1 point for each stage. 

 

 

 

Part (E) [3 points] 

Will data forwarding from the MEM stage to any of ALU1, MEM, or ALU2 stages reduce or avoid stalls? 

Explain your answer for each stage. 

Solution: The result of a memory access could be used in the ALU1 stage, and so forwarding to the ALU1 

stage is beneficial. Forwarding to ALU2 is not needed since ALU2 comes after MEM. MEM to MEM 

forwarding is also required. E.g., 

LOAD R1 0(R2) 

STORE R1 0(R3) 

Grading: 1 point for each stage. 


