
Lecture notes for CS 333 - Chapter 3 12/4/2019

Sarita Adve 1

Data Parallel Architectures - SIMD

Motivation

Vectors

SIMD (multimedia) instructions (brief recap)

GPUs (project presentations)

Motivation

Recall SIMD from Chapter 5

Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like MIPS. There are also
eight 64-element vector registers, and all the functional units are vector functional units. This chapter defines special vector instructions

for both arithmetic and memory accesses. The figure shows vector units for logical and integer operations so that VMIPS looks like a

standard vector processor that usually includes these units; however, we will not be discussing these units. The vector and scalar
registers have a significant number of read and write ports to allow multiple simultaneous vector operations. A set of crossbar switches

(thick gray lines) connects these ports to the inputs and outputs of the vector functional units.

Vector Processors

We use VMIPS

from an older

edition. Book uses

very similar RV64V,

but it was still in

transition at time of

printing

What are Vector Instructions?

A vector is a one-dimensional array of numbers

float A[64], B[64], C[64]

Original motivation: Many scientific programs operate on vectors of

floating point data
for (i=0; i<64; i++)

C[i] = A[i] + B[i]

Multimedia, graphics, neural networks, other emerging apps also

operate on vectors of data

A vector instruction performs an operation on each vector element

ADDVV C, A, B

1 2

3 4

Lecture notes for CS 333 - Chapter 3 12/4/2019

Sarita Adve 2

Why Vector Instructions?

Want deeper pipelines, BUT

Vector Architectures

Vector-Register Machines

Load/store architecture

All vector operations use registers (except load/store)

Multiple ports are cheaper

Optimized for small vectors

Memory-Memory Vector Machines

All vectors reside in memory

Long startup latency

Multiple ports are expensive

Optimized for long vectors

Often vectors are short

Early machines were memory-memory (TI ASC, CDC STAR)

Later machines use vector registers

VMIPS Architecture

Strongly based on Cray

Extend MIPS with vector instructions

Scalar unit

Eight vector registers (V0-V7)

Each is 64 elements, 64 bits wide

Five Vector Functional Units

FP+, FP*, FP/, integer & logical

Fully pipelined

Vector Load/Store Units

Fully pipelined

VMIPS Architecture, cont.

Vector-Vector Instructions

Operate on two vectors

Produce a third vector

for (i=0; i<64; i++)

V1[i] = V2[i] + V3[i]

ADDVV.D V1, V2, V3

Vector-Scalar Instructions

Operate on one vector, one scalar

Produce a third vector

for (i=0; i<64; i++)

V1[i] = F0 + V3[i]

ADDVS.D V1, V3, F0

5 6

7 8

Lecture notes for CS 333 - Chapter 3 12/4/2019

Sarita Adve 3

VMIPS Architecture, cont.

Vector Load/Store Instructions

Load/Store a vector from memory into a vector register

Operates on contiguous addresses

LV V1, R1 ; V1[i] = M[R1 + i]

SV R1, V1 ; M[R1 + i] = V1[i]

Load/Store Vector with Stride

Vectors not always contiguous in memory

Add non-unit stride on each access

LVWS V1, (R1, R2) ; V1[i] = M[R1 + i*R2]

SVWS (R1, R2), V1 ; M[R1 + i*R2] = V1[i]

Vector Load/Store Indexed

Indirect accesses through an index vector

LVI V1, (R1+V2) ; V1[i] = M[R1 + V2[i]]

SVI (R1+V2), V1 ; M[R1 + V2[i]] = V1[i]

VMIPS Architecture, cont.

Double-precision A*X Plus Y (DAXPY):

for (i=0; i<64; i++)

Y[i] = a * X[i] + Y[i]

L.D F0, a

LV V1, Rx

MULVS.D V2, V1, F0

LV V3, Ry

ADDVV.D V4, V2, V3

SV Ry, V4

6 instructions instead of 600!

Remember: MIPS means “Meaningless Indicator of Performance”

Not All Vectors are 64 Elements Long

Vector length register (VLR)

Controls length of vector operations

0  VLR  MVL = 64

for (i=0; i<100; i++)

X[i] = a * X[i]

LD F0, a

MTC1 VLR, 36 /* 100 - 64 */

LV V1, Rx

MULVS V2, V1, F0

SV Rx, V2

ADD Rx, Rx, 36

MTCl VLR, 64

LV V1, Rx

MULVS V2, V1, F0

SV Rx, V2

Strip Mining for i = 1, n

Strip Mining

General case: Parameter n

for (i=0; i<n; i++)

X[i] = a * X[i]

Strip-mined version (pseudocode)

low = 0

VL = (n mod MVL) /* Odd sized piece */

for (j = 0; j < (n / MVL); j++) { /* Outer loop */

for (i = low, i < low+VL1; i++) /* Length */

X[i] = a * X[i]

low = low + VL /* Base of next chunk */

VL = MVL /* Reset length to MAX */

}

9 10

11 12

Lecture notes for CS 333 - Chapter 3 12/4/2019

Sarita Adve 4

Old Vector Machines Did Not Have Caches

Caches

Vectorizable codes often have poor locality

Large vectors don't fit in cache

Large vectors flush other data from the cache

Cannot exploit known access patterns

Unpredictability hurts

Degrades cycle time

Vector Registers (like all registers)

Very fast

Predictable

Short id

Multiple ports easier

More Options

Use vector mask register for vectorizing

for (i=0; i<64; i++)

if (A[i] != 0.0) then A[i] = A[i]+ 5.0

Use chaining (vector register bypass) for RAWs

MULTV V1, ,

ADDV , V1,

Use gather/scatter for sparse matrices

for (i=0; i<64; i++)

A[K[i]] = A[K[i]] + C[M[i]]

Use multiple lanes for parallelism: implementation

FINAL WARNING: Make scalar unit fast!

Amdahl's law

CRAY1 was the fastest scalar computer

Compiler Technology

Must detect vectorizable loops

Must detect dependences that prevent vectorization

Data, anti, output dependences

Only data (or true) dependences important, others can be

eliminated with renaming

13 14

15

