
CS433: Computer Architecture – Fall 2019 

Homework 5 

Total Points: Undergraduates (44 points), Graduates (52 points) 

Undergraduate students should only solve the first 4 problems. Graduate students should 

solve all problems. 

Due Date: Nov 5, 2019 at 11:00am (See course information handout for more details) 

Directions: 

• All students must write and sign the following statement at the end of their homework 

submission. "I have read the honor code for this class in the course information 

handout and have done this homework in conformance with that code. I understand 

fully the penalty for violating the honor code policies for this class." No credit will be 

given for a submission that does not contain this signed statement. 

• On top of the first page of your homework solutions, please write your name and 

NETID, your partner’s name and NETID, and whether you are an undergrad or grad 

student.  Also, write your NETID on each successive page. 

• Please show all work that you used to arrive at your answer. Answers without 

justification will not receive credit. Errors in numerical calculations will not be 

penalized. Cascading errors will usually be penalized only once. 

 

Problem 1 [5 Points] 

A 4 entry victim cache for a 4KB direct mapped cache removes 80% of the conflict misses in a 

program. Without the victim cache, the miss rate is 0.064 (6.4%) and 67% of these misses are 

conflict misses. What is the percentage improvement in the AMAT (average memory access time) 

due to the victim cache? 

Assume a hit in the main (4KB) cache takes 1 cycle. For a miss in the main cache that hits in the 

victim cache, assume an additional penalty of 1 cycle to access the victim cache. For a miss in 

both the main and victim caches, assume a further penalty of 48 cycles to get the data from 

memory. Assume a simple, single-issue, 5-stage pipeline, in-order processor that blocks on every 

read and write until it completes. 

 

Problem 2 [12 points] 

You are building a computer system around a processor with in-order execution that runs at 1 GHz 

and has a CPI of 1, excluding memory accesses. The only instructions that read or write data 

from/to memory are loads (20% of all instructions) and stores (5% of all instructions). 

The memory system for this computer has a split L1 cache. Both the I-cache and the D-cache hold 

32 KB each. The I-cache has a 2% miss rate and 64 byte blocks, and the D-cache is a write-through, 

no-write-allocate cache with a 5% miss rate and 64 byte blocks. The hit time for both the I-cache 

and the D-cache is 1 ns. The L1 cache has a write buffer. 95% of writes to L1 find a free entry in 

the write buffer immediately. The other 5% of the writes have to wait until an entry frees up in the 

write buffer (assume that such writes arrive just as the write buffer initiates a request to L2 to free 



up its entry and the entry is not freed up until the L2 is done with the request). The processor is 

stalled on a write until a free write buffer entry is available.  

The L2 cache is a unified write-back, write-allocate cache with a total size of 512 KB and a block 

size of 64-bytes. The hit time of the L2 cache is 15ns for both read hits and write hits. Tag 

comparison for hit/miss is included in the 15ns in all cases, do not add hit time to miss time on a 

miss. The local hit rate of the L2 cache is 80%. Also, 50% of all L2 cache blocks replaced are 

dirty. The 64-bit wide main memory has an access latency of 20ns (including the time for the 

request to reach from the L2 cache to the main memory), after which any number of bus words 

may be transferred at the rate of one bus word (64-bit) per bus cycle on the 64-bit wide 100 MHz 

main memory bus. Assume inclusion between the L1 and L2 caches and assume there is no write-

back buffer at the L2 cache. Assume a write-back takes the same amount of time as an L2 read 

miss of the same size. 

Assume all caches in the system are blocking; i.e., they can handle only one memory access 

(load, store, or writeback) at a time. When calculating the miss penalty for a load or store for a 

writeback cache, the time for any needed writebacks should be included in the miss penalty. 

While calculating any time values (such as hit time, miss penalty, AMAT), please use ns 

(nanoseconds) as the unit of time. For miss rates below, give the local miss rate for that cache. By 

miss penaltyL2, we mean the time from the miss request issued by the L2 cache up to the time the 

data comes back to the L2 cache from main memory. 

 

Part A [7 points] 

Computing the AMAT (average memory access time) for instruction accesses. 

 

i. Give the values of the following terms for instruction accesses: hit timeL1, miss rateL1, hit 

timeL2, miss rateL2. [1 point] 

 

ii. Give the formula for calculating miss penaltyL2, and compute the value of miss penalty L2.  

[4 points] 

 

iii. Give the formula for calculating the AMAT for this system using the five terms whose values 

you computed above and any other values you need. [1 point] 

 

iv. Plug in the values into the AMAT formula above, and compute a numerical value for AMAT 

for instruction accesses. [1 point] 

  



Part B [2 points] 

Computing the AMAT for data reads. 

i. Give the value of miss rateL1 for data reads. [1 point] 

 

ii. Calculate the value of the AMAT for data reads using the above value, and other values you 

need. [1 point] 

 

 

Part C [3 points] 

Computing the AMAT for data writes. Assume miss penaltyL2 for a data write is the same as 

that computed previously for a data read. 

i. Give the value of write timeL2Buff, the time for a write buffer entry to be written to the L2 cache. 

[2 points]  

 

ii. Calculate the value of the AMAT for data writes using the above information, and any other 

values that you need. Only include the time that the processor will be stalled. Hint: There are two 

cases to be considered here depending upon whether the write buffer is full or not. [1 point] 

 

 

Problem 3 [13 points] 

Consider the following piece of code: 

register int i, j;  /* i, j are in the processor registers */  

register float sum1, sum2;  

float a[64][64], b[64][64];  

 

for (i = 0; i < 64; i++) {   /* 1 */ 

 for (j = 0; j < 64; j++) { /* 2 */  

  sum1 += a[i][j];  /* 3 */  

 }  

for (j = 0; j < 32; j++) {  /* 4 */  

  sum2 += b[i][2*j];  /* 5 */  

 }  

} 



 

Assume the following: 

• There is a perfect instruction cache; i.e., do not worry about the time for any instruction accesses. 

• Both int and float are of size 4 bytes.  

• Only the accesses to the array locations a[i][j] and b[i][2*j] generate loads to the data cache. The 

rest of the variables are all allocated in registers. 

• Assume a fully associative, LRU data cache with 32 lines, where each line has 16 bytes.  

• Initially, the data cache is empty.  

• To keep things simple, we will assume that statements in the above code are executed 

sequentially. The time to execute lines (1), (2), and (4) is 4 cycles for each invocation. Lines (3) 

and (5) take 10 cycles to execute and an additional 40 cycles to wait for the data if there is a data 

cache miss. 

• There is a data prefetch instruction with the format prefetch(array[index]). This prefetches the 

entire block containing the word array[index] into the data cache. It takes 1 cycle for the processor 

to execute this instruction and send it to the data cache. The processor can then go ahead and 

execute subsequent instructions. If the prefetched data is not in the cache, it takes 40 cycles for the 

data to get loaded into the cache. 

• The arrays a and b are stored in row major form. 

• The arrays a and b both start at cache line boundaries. 

 

 

Part A [2 points] 

How many cycles does the above code fragment take to execute if we do NOT use prefetching? 

 

 

Part B [2 points] 

Consider inserting prefetch instructions for the two inner loops for the arrays a and b respectively. 

Explain why we may want to unroll the loops to insert prefetches. What is the minimum number 

of times you would need to unroll for each of the two loops for this purpose? 

 

 



Part C [4 points] 

Unroll the inner loops for the number of times identified in part b, and insert the minimum number 

of software prefetches to minimize execution time. The technique to insert prefetches is analogous 

to software pipelining. You do not need to worry about startup and cleanup code and do not 

introduce any new loops. 

 

Part D [2 points] 

How many cycles does the code in part (c) take to execute? Calculate the average speedup over 

the code without prefetching. Assume prefetches are not present in the startup code. Extra time 

needed by prefetches executing beyond the end of the loop execution time should not be counted. 

 

 

Part E [3 points] 

Is there another technique that can be used to achieve the same objective as loop unrolling in this 

example, but with fewer instructions? Explain this technique and illustrate its use for the code in 

part (c). 

 

Problem 4 [14 points] 

Way prediction allows an associative cache to provide the hit time of a direct-mapped cache. The 

MIPS R10000 processor used way prediction to achieve a different goal: reduce the cost of the 

chip package. The R10000 hardware includes an on-chip L1 cache, on-chip L2 tag comparison 

circuitry, and an on-chip L2 way prediction table. L2 tag information is brought on chip to detect 

an L2 hit or miss. The way prediction table contains 8K 1-bit entries, each corresponding to two 

L2 cache blocks. L2 cache storage is built external to the processor package, is 2-way associative, 

and may have one of several block sizes. 

Part A [2 points] 

How can way prediction reduce the number of pins needed on the R10000 package to read L2 tags 

and data, and what is the impact on performance compared to a package with a full complement 

of pins to interface to the L2 cache? 

 

Part B [2 points] 

How could a 2-associative cache be implemented with the same smaller number of pins but without 

the way prediction table? What is the performance drawback? 



Part C [4 points] 

Assume that the R10000 uses most-recently used way prediction. What are reasonable design 

choices for the cache state update(s) to make when the desired data is in the predicted way, the 

desired data is in the non-predicted way, and the desired data is not in the L2 cache? Please fill in 

your answers in the following table. 

 

 

Cache Access Case  

 

Cache State Change  

Way Prediction Entry 

Desired data is in the  

predicted way  

No change  

 

Desired data is in the non-predicted way  

 

 

Desired data is not in the L2 cache  

 

 

 

Part D [2 points] 

For a 1024 KB L2 cache with 64-byte blocks and 8-way set associativity, how would the prediction 

table be organized for this new size? Give your answer in the form of “X entries by Y bits per 

entry.” 

 

Part E [2 points] 

For an 8 MB L2 cache with 128-byte blocks and 2-way set associativity, what would the prediction 

table organization be? Again, give your answer as “X entries by Y bits per entry.” 

 

Part F [2 points] 

What is the difference in the way that the R10000 with only 8K way prediction table entries will 

support the cache in part d) versus the cache in part e)? Hint: Think about the similarity between 

a way prediction table and a branch prediction table. 

  



NOTE: ONLY GRADUATE STUDENTS SHOULD SOLVE THIS PROBLEM 

Problem 5 [8 points] 

Consider a computer with an in-order CPU, and with a data cache block size of 64 bytes (16 words) 

and a 32-bit wide bus to the memory. The memory takes 10 cycles to supply the first word and 2 

cycles per word to supply the rest of the block. The cache is non-blocking, and it can support any 

number of outstanding misses. The memory can service multiple requests simultaneously if 

required (techniques to achieve this will be discussed in class). 

This cache and memory system implement a “Requested Word First and Early Restart” policy, 

and the bus delivers the block data in “cyclic order” starting with the requested word. Cyclic order 

means that if the requested word is the 5th in a block of size 16 words, then the order in which the 

words in the block are supplied is 5, 6, 7 … 16, 1, 2, 3, 4. 

Part A [3 points] 

Consider the following code fragment, which operates on an integer array A which is block-aligned 

(that is A[0] is located at the start of a cache block in memory): 

for (i = 11; i < 100; i += 16) { /* 1 */ 

 A[i] *= 2;   /* 2 */ 

} 

Suppose that the cache is big enough so that there are only compulsory misses. Further, statement 

1 takes 4 cycles to execute, and statement 2 takes 4 cycles to execute in addition to any miss 

latency. Assume no overlap in the execution of these statements. Initially, the array A is not present 

in the cache, so any initial accesses to A cause misses in the cache. 

What is the running time of this loop with the “Requested Word First and Early Restart” policy? 

 

 

Part B [3 points] 

How many cycles would the above loop take to run in a system with just “Early Restart” (i.e. the 

block is fetched in normal order, but the program is started early at arrival of requested word). 

 

 

Part C [2 points] 

How many cycles would the above loop take to run in a system with the base policy (i.e. normal 

fetch and restart)? 


