
Chapter 3 – Instruction-Level Parallelism and 
its Exploitation (Part 4)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)
Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)
Static Techniques (Section 3.2, Appendix H)

Limitations of ILP (Section 3.10)

Multithreading (Section 3.12)

Putting it Together (Mini-projects)



Beyond Pipelining (Section 3.7)

Limits on Pipelining 
Latch overheads & signal skew 
Unpipelined instruction issue logic (Flynn limit: CPI ³ 1) 

Two techniques for parallelism in instruction issue

Superscalar or multiple issue

Hardware determines which of next n instructions can issue 
in parallel

Maybe statically or dynamically scheduled

VLIW – Very Long Instruction Word
Compiler packs multiple independent operations into an 

instruction



Simple 5-Stage Superscalar Pipeline

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB
i+4 IF ID EX MEM WB
i+5 IF ID EX MEM WB
i+6 IF ID EX MEM WB
i+7 IF ID EX MEM WB
i+8 IF ID EX MEM WB
i+9 IF ID EX MEM WB



Superscalar, cont. 
IF Parallel access to I-cache 

Require alignment? 
ID Replicate logic 

Fixed-length instructions? 
HANDLE INTRA-CYCLE HAZARDS 

EX Parallel/pipelined (as before) 
MEM > 1 per cycle? 

If so, hazards & multi-ported D-cache 
WB Different register files? 

Multi-ported register files? 

Progression: Integer + floating-point 
Any two instructions
Any four instructions 
Any n instructions?



Assume two instructions per cycle 
One integer, load/store, or branch 
One floating point 

Could require 64-bit alignment and ordering of instruction pair. 
I F I F F I 
I F F I F I 
OK NOT NOT 

OK OK 

Best case 
CPI = 0.5 
But .... 

Example Superscalar



Superscalar (Cont.)
Hazards are a big problem 
Loads 

Latency is 1 cycle 
Was 1 instruction 
NOW 3 instructions 

Branches 
NOW 3 instructions 

Floating point loads and stores 
May cause structural hazards 
Additional ports? 
Additional stalls? 

Parallelism required = 



VLIW = Very Long Instruction Word Processors
Static multiple issue

Compiler packs multiple independent operations into an instruction 
Like horizontal microcode 

Versus Superscalar 

Static Techniques for ILP - VLIW Processors



Limitations of Multi-Issue Machines

Inherent limitations of ILP 

Difficulties in building hardware 
Increase ports to registers 
Increase ports to memory 
Duplicate FUs 
Decoding in superscalar and impact on clock rate 

Limitations specific to VLIW 
Code size, binary compatibility



Compiler Techniques to Expose ILP

Many compiler techniques exist
Several used for multiprocessors as well
Our focus on techniques specifically for ILP



Loop Unrolling (Section 3.2)
Add scalar to vector 
Loop: L.D F0, 0(R1) 

stall 
ADD.D F4, F0, F2 
stall 
stall 
S.D 0(R1), F4 
DSUBUI R1, R1, #8 
stall
BNEZ R1, Loop
stall

With scheduling
Loop: L.D F0, 0(R1) 

DSUBUI R1, R1, #8
ADD.D F4, F0, F2 
stall
BNEZ R1, Loop ; Assume delayed branch 
S.D 8(R1), F4



Loop Unrolling 

Unrolling the loop
Loop: L.D F0, 0(R1) 

ADD.D F4, F0, F2 
S.D 0(R1), F4 
L.D F6, -8(R1) 
ADD.D F8, F6, F2 
S.D -8(R1), F8 
L.D F10, -16(R1) 
ADD.D F12, F10, F2 
S.D -16(R1), F12 
L.D F14, -24(R1) 
ADD.D F16, F14, F2 
S.D -24(R1), F16 
DSUBUI R1, R1, #32
BNEZ R1, Loop;  Assume delayed branch

Rename registers 
Remove some branch overhead  (calculate intermediate values)



Loop Unrolling

Scheduling the loop for simple pipeline 
Loop: L.D F0, 0(R1) 

L.D F6, -8(R1) 
L.D F10, -16(R1) 
L.D F14, -24(R1) 
ADD.D F4, F0, F2 
ADD.D F8, F6, F2 
ADD.D F12, F10, F2 
ADD.D F16, F14, F2 
S.D 0(R1), F4 
S.D -8(R1), F8 
S.D -16(R1), F12 
DSUBUI R1, R1, #32 
BNEZ R1, Loop ; Assume delayed branch
S.D 8(R1), F16

How to schedule for multiple issue? 



Software Pipelining (Section H.3)

Pipeline loops in software
Pipelined loop iteration

Executes instructions from multiple iterations of original loop
Separates dependent instructions

Less code than unrolling



Software Pipelining – Example

sum = 0.0; 
for (i=1; i<=N; i++) {    ; sum = sum + a[i]*b[i] 

load a[i] ; Ai 
load b[i] ; Bi 
mult ab[i] ; *i 
add sum[i] ; +i 

}

sum = 0.0; 
START-UP-BLOCK 
for (i=3; i<=N; i++) { 

load a[i] ; Ai 
load b[i] ; Bi 
mult ab[i-1] ; *i-1 
add sum[i-2] ; +i-2 

} 
FINISH-UP-BLOCK

LOOP
START-UP    i=3 ... i=N FINISH-UP
-------- --- --- ---------
A1    A2    A3 Ai AN
B1    B2    B3 Bi BN

*1    *2 *i-1 *N-1 *N
+1 +i-2 +N-2 +N-1   +N



Global Scheduling
Loop unrolling and software pipelining work well for straightline code

What if code has branches?

Global scheduling techniques
Trace scheduling



Trace Scheduling

Compiler predicts most frequently executed execution path (trace)
Schedules this path and inserts repair code for mispredictions 



Trace Scheduling - Example
b[i] = ``old’’ 
a[i] = 
if (a[i] == 0) then 

b[i] = ``new’’; common case 
else 

X 
endif 
c[i] = 

Until done
Select most common path - a trace 
Schedule trace across basic blocks
Repair other paths

trace to be scheduled: repair code: 

b[i] = ``old'' A: restore old b[i] 
a[i] = X 
b[i] = ``new'' maybe recalculate c[i] 
c[i] = goto B 
if (a[i] != 0) goto A 

B:



Hardware Support to Expose Compile-Time ILP

Compiler scheduling limited by knowledge of branch behavior
Hardware support to help compiler

Predicated (or guarded or conditional) instructions 

Hardware support for compiler speculation



Predicated Instructions (Section H.4)

Used to convert control dependence to data dependence 

Instruction executed based on a predicate (or guard or condition) 

If condition is false, then no result write or exceptions



Predicated Instructions (Cont.) 
Example 

if (condition) then {
A = B; 

}
... 

Convert to: 
R1¬ result of condition evaluation 
A = B predicated on R1
... 

Hardware can schedule instructions across the branch 

Alpha, MIPS, PowerPC, SPARC V9, x86 (Pentium) have conditional moves 

IA-64 has general predication - 64 1-bit predicate bits

Limitations 
Takes a clock even if annulled 



Hardware Support for Compiler Speculation (Section H.5) 

Successful compiler scheduling requires
Preservation of exception behavior on speculation
Mechanism to speculatively reorder memory operations



Hardware for Preserving Exception Behavior 

What if there is an exception on a speculative instruction?
Distinguish between two classes of exceptions

(1) Indicate program error and require termination (e.g., 
protection violation)

(2) Can be handled and program resumed (e.g., page fault)
Type (2) can be handled immediately even for speculative 

instructions
Type (1) requires more support

Poison bits



Poison Bits 

Hardware support
A poison bit for each register
A speculation bit for each instruction 

If a speculative instruction sees an exception
it sets poison bit of destination

If a speculative instruction sees poison bit set for source
it propagates poison bit to its destination

If normal instruction sees poison bit for source, takes exception
Normal instruction resets poison bit of destination register



Hardware for Memory Speculation 

How to reorder memory ops if compiler is not sure of addresses?
Consider moving a load

Insert a special check instruction at original location of load
When load is executed, hardware saves its address
If there is a store to L’s address before the check instruction

Redo load
Branch to fix up code if other instructions already used load’s 

value


