
Chapter 3 – Instruction-Level Parallelism and
its Exploitation (Part 4)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)
Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)
Static Techniques (Section 3.2, Appendix H)

Limitations of ILP (Section 3.10)

Multithreading (Section 3.12)

Putting it Together (Mini-projects)

Beyond Pipelining (Section 3.7)

Limits on Pipelining
Latch overheads & signal skew
Unpipelined instruction issue logic (Flynn limit: CPI ³ 1)

Two techniques for parallelism in instruction issue

Superscalar or multiple issue

Hardware determines which of next n instructions can issue
in parallel

Maybe statically or dynamically scheduled

VLIW – Very Long Instruction Word
Compiler packs multiple independent operations into an

instruction

Simple 5-Stage Superscalar Pipeline

1 2 3 4 5 6 7 8 9

i IF ID EX MEM WB
i+1 IF ID EX MEM WB
i+2 IF ID EX MEM WB
i+3 IF ID EX MEM WB
i+4 IF ID EX MEM WB
i+5 IF ID EX MEM WB
i+6 IF ID EX MEM WB
i+7 IF ID EX MEM WB
i+8 IF ID EX MEM WB
i+9 IF ID EX MEM WB

Superscalar, cont.
IF Parallel access to I-cache

Require alignment?
ID Replicate logic

Fixed-length instructions?
HANDLE INTRA-CYCLE HAZARDS

EX Parallel/pipelined (as before)
MEM > 1 per cycle?

If so, hazards & multi-ported D-cache
WB Different register files?

Multi-ported register files?

Progression: Integer + floating-point
Any two instructions
Any four instructions
Any n instructions?

Assume two instructions per cycle
One integer, load/store, or branch
One floating point

Could require 64-bit alignment and ordering of instruction pair.
I F I F F I
I F F I F I
OK NOT NOT

OK OK

Best case
CPI = 0.5
But

Example Superscalar

Superscalar (Cont.)
Hazards are a big problem
Loads

Latency is 1 cycle
Was 1 instruction
NOW 3 instructions

Branches
NOW 3 instructions

Floating point loads and stores
May cause structural hazards
Additional ports?
Additional stalls?

Parallelism required =

VLIW = Very Long Instruction Word Processors
Static multiple issue

Compiler packs multiple independent operations into an instruction
Like horizontal microcode

Versus Superscalar

Static Techniques for ILP - VLIW Processors

Limitations of Multi-Issue Machines

Inherent limitations of ILP

Difficulties in building hardware
Increase ports to registers
Increase ports to memory
Duplicate FUs
Decoding in superscalar and impact on clock rate

Limitations specific to VLIW
Code size, binary compatibility

Compiler Techniques to Expose ILP

Many compiler techniques exist
Several used for multiprocessors as well
Our focus on techniques specifically for ILP

Loop Unrolling (Section 3.2)
Add scalar to vector
Loop: L.D F0, 0(R1)

stall
ADD.D F4, F0, F2
stall
stall
S.D 0(R1), F4
DSUBUI R1, R1, #8
stall
BNEZ R1, Loop
stall

With scheduling
Loop: L.D F0, 0(R1)

DSUBUI R1, R1, #8
ADD.D F4, F0, F2
stall
BNEZ R1, Loop ; Assume delayed branch
S.D 8(R1), F4

Loop Unrolling

Unrolling the loop
Loop: L.D F0, 0(R1)

ADD.D F4, F0, F2
S.D 0(R1), F4
L.D F6, -8(R1)
ADD.D F8, F6, F2
S.D -8(R1), F8
L.D F10, -16(R1)
ADD.D F12, F10, F2
S.D -16(R1), F12
L.D F14, -24(R1)
ADD.D F16, F14, F2
S.D -24(R1), F16
DSUBUI R1, R1, #32
BNEZ R1, Loop; Assume delayed branch

Rename registers
Remove some branch overhead (calculate intermediate values)

Loop Unrolling

Scheduling the loop for simple pipeline
Loop: L.D F0, 0(R1)

L.D F6, -8(R1)
L.D F10, -16(R1)
L.D F14, -24(R1)
ADD.D F4, F0, F2
ADD.D F8, F6, F2
ADD.D F12, F10, F2
ADD.D F16, F14, F2
S.D 0(R1), F4
S.D -8(R1), F8
S.D -16(R1), F12
DSUBUI R1, R1, #32
BNEZ R1, Loop ; Assume delayed branch
S.D 8(R1), F16

How to schedule for multiple issue?

Software Pipelining (Section H.3)

Pipeline loops in software
Pipelined loop iteration

Executes instructions from multiple iterations of original loop
Separates dependent instructions

Less code than unrolling

Software Pipelining – Example

sum = 0.0;
for (i=1; i<=N; i++) { ; sum = sum + a[i]*b[i]

load a[i] ; Ai
load b[i] ; Bi
mult ab[i] ; *i
add sum[i] ; +i

}

sum = 0.0;
START-UP-BLOCK
for (i=3; i<=N; i++) {

load a[i] ; Ai
load b[i] ; Bi
mult ab[i-1] ; *i-1
add sum[i-2] ; +i-2

}
FINISH-UP-BLOCK

LOOP
START-UP i=3 ... i=N FINISH-UP
-------- --- --- ---------
A1 A2 A3 Ai AN
B1 B2 B3 Bi BN

*1 *2 *i-1 *N-1 *N
+1 +i-2 +N-2 +N-1 +N

Global Scheduling
Loop unrolling and software pipelining work well for straightline code

What if code has branches?

Global scheduling techniques
Trace scheduling

Trace Scheduling

Compiler predicts most frequently executed execution path (trace)
Schedules this path and inserts repair code for mispredictions

Trace Scheduling - Example
b[i] = ``old’’
a[i] =
if (a[i] == 0) then

b[i] = ``new’’; common case
else

X
endif
c[i] =

Until done
Select most common path - a trace
Schedule trace across basic blocks
Repair other paths

trace to be scheduled: repair code:

b[i] = ``old'' A: restore old b[i]
a[i] = X
b[i] = ``new'' maybe recalculate c[i]
c[i] = goto B
if (a[i] != 0) goto A

B:

Hardware Support to Expose Compile-Time ILP

Compiler scheduling limited by knowledge of branch behavior
Hardware support to help compiler

Predicated (or guarded or conditional) instructions

Hardware support for compiler speculation

Predicated Instructions (Section H.4)

Used to convert control dependence to data dependence

Instruction executed based on a predicate (or guard or condition)

If condition is false, then no result write or exceptions

Predicated Instructions (Cont.)
Example

if (condition) then {
A = B;

}
...

Convert to:
R1¬ result of condition evaluation
A = B predicated on R1
...

Hardware can schedule instructions across the branch

Alpha, MIPS, PowerPC, SPARC V9, x86 (Pentium) have conditional moves

IA-64 has general predication - 64 1-bit predicate bits

Limitations
Takes a clock even if annulled

Hardware Support for Compiler Speculation (Section H.5)

Successful compiler scheduling requires
Preservation of exception behavior on speculation
Mechanism to speculatively reorder memory operations

Hardware for Preserving Exception Behavior

What if there is an exception on a speculative instruction?
Distinguish between two classes of exceptions

(1) Indicate program error and require termination (e.g.,
protection violation)

(2) Can be handled and program resumed (e.g., page fault)
Type (2) can be handled immediately even for speculative

instructions
Type (1) requires more support

Poison bits

Poison Bits

Hardware support
A poison bit for each register
A speculation bit for each instruction

If a speculative instruction sees an exception
it sets poison bit of destination

If a speculative instruction sees poison bit set for source
it propagates poison bit to its destination

If normal instruction sees poison bit for source, takes exception
Normal instruction resets poison bit of destination register

Hardware for Memory Speculation

How to reorder memory ops if compiler is not sure of addresses?
Consider moving a load

Insert a special check instruction at original location of load
When load is executed, hardware saves its address
If there is a store to L’s address before the check instruction

Redo load
Branch to fix up code if other instructions already used load’s

value

