
Chapter 3 – Instruction-Level Parallelism and
its Exploitation (Part 3)

ILP vs. Parallel Computers

Dynamic Scheduling (Section 3.4, 3.5)
Dynamic Branch Prediction (Section 3.3, 3.9, and Appendix C)

Hardware Speculation and Precise Interrupts (Section 3.6)

Multiple Issue (Section 3.7)
Static Techniques (Section 3.2, Appendix H)

Limitations of ILP

Multithreading (Section 3.11)

Putting it Together (Mini-projects)

Branch Prediction Buffer Strategies: Limitations

Limitations
May use bit from wrong PC
Target must be known when branch resolved

Branch Target Buffer or Cache (Section 3.9)

Store target PC along with prediction

Accessed in IF stage

Next IF stage uses target PC
No bubbles on correctly predicted taken branch

Must store tag

More state

Can remove not-taken branches?

Branch Target Buffer or Cache**

Store target PC along with prediction

Accessed in IF stage

Next IF stage uses target PC
No bubbles on correctly predicted taken branch

Must store tag

More state

Can remove not-taken branches?
N-bit predictors must update state for not-taken branches

Branch Target Buffer or Cache**

Store target PC along with prediction

Accessed in IF stage

Next IF stage uses target PC
No bubbles on correctly predicted taken branch

Must store tag

More state

Can remove not-taken branches?
N-bit predictors must update state for not-taken branches
Maintain branch prediction buffer to remove not-taken branches

from target buffer

Branch Target Cache With Target Instruction

Store target instruction along with prediction

Send target instruction instead of branch into ID

Zero cycle branch - branch folding

Used for unconditional jumps

E.g., ARM Cortex A-53

Return Address Stack (Section 3.9)

Hardware stack for addresses for returns

Call pushes return address in stack

Return pops the address

Perfect prediction if stack length ³ call depth

Static vs. Dynamic Branch Prediction Accuracy**

Speculative Execution

How far can we go with branch prediction?
Speculative fetch?
Speculative issue?
Speculative execution?
Speculative write?

Speculative Execution
Allows instructions after branch to execute before knowing if branch

will be taken

Must be able to undo if branch is not taken

Often try to combine with dynamic scheduling

Key insight: Split Write stage into Complete and Commit
Complete out of order

No state update
Commit in order

State updated (instruction no longer speculative)
Use reorder buffer

Overview
Instructions complete out-of-order
Reorder buffer reorganizes instructions
Modify state in-order

Instruction tag now is reorder buffer entry

Reorder Buffer

Entry Busy Type Dest Result State Excep
1 0
2 1 LD 4 Exec 0
3 1 BR Exec 0
4 1 ADD 6 75 Compl 0
5 0
 0
N 0

tail

head

Re-order Buffer Pipeline

Issue:

Execute:

Complete:

Commit:

Re-order Buffer Pipeline**

Issue:
Allocate reorder buffer entry (RB) and reservation station (RS)
Make RS and register result status point to RB
Read operands from registers or reorder buffer if available

Execute:

Complete:

Commit:

Re-order Buffer Pipeline**

Issue:
Allocate reorder buffer entry (RB) and reservation station (RS)
Make RS and register result status point to RB
Read operands from registers or reorder buffer if available

Execute:
Execute when operands available
(Monitor CDB if not available)

Complete:

Commit:

Re-order Buffer Pipeline**

Issue:
Allocate reorder buffer entry (RB) and reservation station (RS)
Make RS and register result status point to RB
Read operands from registers or reorder buffer if available

Execute:
Execute when operands available
(Monitor CDB if not available)

Complete:

Write result to CDB, RB entry pointed to by RS, other RS waiting
for this operand (no write in register file)

Re-order Buffer Pipeline (Cont.)**

Commit: When instruction reaches head of reorder buffer:

Write result in register file (for all but branch and store)

For store, do memory write

For branch,

if mispredict, flush all entries in reorder buffer and restart

Make RB entry free

Precise Interrupts Again

Precise interrupts hard with dynamic scheduling
Consider our canonical code fragment:

LF F6,34(R2)
LF F2,45(R3)
MULTF F0,F2,F4
SUBF F8,F6,F2
DIVF F10,F0,F6
ADDF F6,F8,F2

What happens if DIVF causes an interrupt?
ADDF has already completed

Out-of-order completion makes interrupts hard
But reorder buffer can help!

Reorder Buffer for Precise Interrupts

Reorder Buffer for Precise Interrupts**

Take interrupt only after instruction reaches the head of the reorder
buffer

Flush all remaining instructions and restart
Ok since no registers updated or stores sent to memory

Re-order Buffer Drawback
Operands need to be read from reorder buffer or registers
Alternative: Rename registers

Rename Registers + Reorder Buffer

Many current machines
More physical registers than logical registers
Reorder buffer does not have values
Read all values from registers

Rename mechanism
Rename map stores mapping from logical to physical registers

(Logical register Rl mapped to physical register Rp)
On issue, Rl mapped to Rp-new
On completion, write to Rp-new
On commit, old mapping of Rl discarded (free Rp-old)
On misprediction, new mapping of Rl discarded (free Rp-new)

