
Chapter 2: Memory Hierarchy Design

Introduction (Section 2.1, Appendix B)

Caches 
Review of basics (Section 2.1, Appendix B)
Advanced methods

Main Memory
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Memory Hierarchies: Key Principles

Make the common case fast 

Common ® Principle of locality 

Fast ® Smaller is faster 



Principle of Locality 

Temporal locality 

Spatial locality 

Examples: 
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Locality in time 
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Principle of Locality**

Temporal locality 
Locality in time 
If a datum has been recently referenced, it is likely to be 

referenced again
Spatial locality 

Locality in space 
When a datum is referenced, neighboring data are likely to be 

referenced soon
Examples: 



Principle of Locality**

Temporal locality 
Locality in time 
If a datum has been recently referenced, it is likely to be 

referenced again 
Spatial locality 

Locality in space 
When a datum is referenced, neighboring data are likely to be 

referenced soon
Examples: 

Temporal locality: Top of stack, Code in a loop 
Spatial locality: Top of stack, Sequential instructions, Structure 

references 



Smaller is Faster

Registers are fastest memory 
Smallest and most expensive 

Static RAMs are faster than DRAMs 
10X faster 
10X less dense 

DRAMs are faster than disk, flash 



Memory Hierarchy

Registers

Cache

Memory

Disk

Type  Size Speed  (x proc. clk) 
Registers   
Cache   
Memory   
Disk, Flash   

 

 



Memory Hierarchy**

Registers

Cache

Memory

Disk

Type  Size Speed  (x proc. clk) 
Registers 32 to 128 I and F 1X 
Cache 10s of KB to 10s of MB ~1 to 10X on-chip, 

~10X off-chip 
Memory GB ~100X 
Disk, Flash GB to TB to … ~1000000X 
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Figure 2.1 The levels in a typical memory hierarchy in a personal mobile device (PMD), such as a cell phone or tablet (A), in
a laptop or desktop computer (B), and in a server (C). As we move farther away from the processor, the memory in the level 
below becomes slower and larger. Note that the time units change by a factor of 109 from picoseconds to milliseconds in the case of 
magnetic disks and that the size units change by a factor of 1010 from thousands of bytes to tens of terabytes. If we were to add 
warehouse-sized computers, as opposed to just servers, the capacity scale would increase by three to six orders of magnitude. 
Solid-state drives (SSDs) composed of Flash are used exclusively in PMDs, and heavily in both laptops and desktops. In many 
desktops, the primary storage system is SSD, and expansion disks are primarily hard disk drives (HDDs). Likewise, many servers 
mix SSDs and HDDs.



Memory Hierarchy Terminology
Block 

Minimum unit that may be present 
Usually fixed length 

Hit – Block is found in upper level 

Miss – Not found in upper level 
Miss ratio – Fraction of references that miss 

Hit Time – Time to access the upper level 

Miss Penalty 
Time to replace block in upper level, plus the time to deliver the 

block to the CPU
Access time – Time to get first word 
Transfer time – Time for remaining words 



Memory Address 

Block Names 
Cache: Line 
VM: Page 

Memory Hierarchy Terminology 

Block-frame address     Offset
 0101010101010101011  01010101



Memory Hierarchy Performance
Indirect measures of time can be misleading 

MIPS can be misleading 
So can Miss ratio

Average (effective) access time is better 
tavg = 

Example: 
thit = 1 
tmiss = 20 
miss ratio = .05 

tavg = 
Effective access time is still an indirect measure 



Memory Hierarchy Performance**
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Memory Hierarchy Performance**
Time is always the ultimate measure 

Indirect measures can be misleading 
MIPS can be misleading 
So can Miss ratio

Average (effective) access time is better 
tavg = thit + miss ratio ´ tmiss

= tcache + miss ratio ´ tmemory

Example: 
thit = 1 
tmiss = 20 
miss ratio = .05 

tavg = 1 + .05 ´ 20 = 2
Effective access time is still an indirect measure 



Example

Poor question: 
Q: What is a reasonable miss ratio? 
A: 1%, 2%, 5%, 10%, 20% ??? 

A better question 
Q: What is a reasonable tavg ?

(assume tcache = 1 cycle, tmemory = 20 cycles) 
A: 1.2, 1.5, 2.0 cycles 

What's a reasonable tavg ? 



Example**

Poor question: 
Q: What is a reasonable miss ratio? 
A: 1%, 2%, 5%, 10%, 20% ??? 

A better question 
Q: What is a reasonable tavg ?

(assume tcache = 1 cycle, tmemory = 20 cycles) 
A: 1.2, 1.5, 2.0 cycles 

What's a reasonable tavg ? 
Depends upon base CPI 
tavg = 2.0 might be OK for base CPI = 10, 
but terrible for base CPI = 1.2 



Example, cont. 
Rearranging terms in 

tavg = tcache + miss ratio ´ tmemory

to solve for miss ratios yields 

miss = 

Reasonable miss ratios (percent) - assume tcache = 1

Proportional to acceptable tavg degradation 
Inversely proportional to tmemory

(tavg -tcache)
tmemory

tavg  (cycles) tmemory 
(cycles) 

1.2 1.5 2.0 

2 10.0 25.0 50.0 
20 1.0 2.5 5.0 

200 0.1 0.25 0.5 
 

 



Basic Cache Questions 

Block placement 
Where can a block be placed in the cache? 

Block Identification 
How is a block found in the cache? 

Block replacement 
Which block should be replaced on a miss? 

Write strategy 
What happens on a write? 

Cache Type 
What type of information is stored in the cache? 



Block Placement

FullyAssociative 
Block goes in any block frame 

Directmapped 
Block goes in exactly one block frame 
( Block frame # ) mod ( # of blocks ) 

SetAssociative 
Block goes in exactly one set 
( Block frame # ) mod ( # of sets ) 

Example: Consider cache with 8 blocks, where does block 12 go? 



Block Identification

How to find the block? 
Tag comparisons 
Parallel search to speed lookup 
Check valid bit 

Example: Where do we search for block 12? 



Example Cache 



Block Replacement
Which block to replace on a miss? 
Least recently used (LRU) 

Optimize based on temporal locality 
Replace block unused for longest time 
State updates on nonMRU misses 

Random 
Select victim at random 
Nearly as good as LRU, and easier 

First-in First-out (FIFO) 
Replace block loaded first 

Optimal 
?



Block Replacement **
Which block to replace on a miss? 

Least recently used (LRU) 
Optimize based on temporal locality 
Replace block unused for longest time 
State updates on non-MRU misses 

Random 
Select victim at random 
Nearly as good as LRU, and easier 

First-in First-out (FIFO) 
Replace block loaded first 

Optimal 
Replace block used furthest in time 



Write Policies 

Writes are harder 
Reads done in parallel with tag compare; writes are not 
Thus, writes are often slower 
(but processor need not wait) 

On hits, update memory? 
Yes writethrough (storethrough) 
No writeback (storein, copyback) 

On misses, allocate cache block? 
Yes write-allocate (usually used w/ writeback) 
No no-write-allocate (usually used w/ writethrough)



Write Policies, cont.
WriteBack 

Update memory only on block replacement 
Dirty bits used so clean blocks can be replaced without updating 

memory 
Traffic/Reference = 
Traffic/Reference = 
Less traffic for larger caches 

WriteThrough 
Update memory on each write 
Write buffers can hide write latency (later) 
Keeps memory uptodate (almost) 
Traffic/Reference =



Write Policies, cont.**
WriteBack 

Update memory only on block replacement 
Dirty bits used so clean blocks can be replaced without updating 

memory 
Traffic/Reference = fractDirty ´ miss ´ B
Traffic/Reference = 1/2 ´ 0.05 ´ 4 = 0.10
Less traffic for larger caches 

WriteThrough 
Update memory on each write 
Write buffers can hide write latency (later) 
Keeps memory uptodate (almost) 
Traffic/Reference =



Write Policies, cont.**
WriteBack 

Update memory only on block replacement 
Dirty bits used so clean blocks can be replaced without updating 

memory 
Traffic/Reference = fractDirty ´ miss ´ B
Traffic/Reference = 1/2 ´ 0.05 ´ 4 = 0.10
Less traffic for larger caches 

WriteThrough 
Update memory on each write 
Write buffers can hide write latency (later) 
Keeps memory uptodate (almost) 
Traffic/Reference = fractionWrites = 0.20
Traffic independent of cache parameters



Cache Type 

Unified (mixed) 
Less costly 
Dynamic response 
Handles writes into Istream 

Separate Instruction & Data (split, Harvard) 
2x bandwidth 
Place closer to I and D ports 
Can customize 
Poorman's associativity 
No interlocks on simultaneous requests 

Caches should be split if simultaneous instruction and data 
accesses are frequent (e.g., RISCs) 



Cache Type Example 
Consider building (a)16K byte I & D caches, or (b) a 32K byte 

unified cache. 
Let tcache is one cycle, tmemory is 10 cycles. 

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction 
fetches. 
tavg = 

(b) miss ratio is 4 % 
tavg =



Cache Type Example** 
Consider building (a)16K byte I & D caches, or (b) a 32K byte 
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Cache Type Example**
Consider building (a)16K byte I & D caches, or (b) a 32K byte unified 

cache. 
Let tcache is one cycle, tmemory is 10 cycles. 

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction fetches. 
tavg = (1+ 0.05 ´ 10) ´ 0.75 

+ (1 + 0.06 ´ 10) ´ 0.25 = 1.5 

(b) miss ratio is 4 % 
tavg = 1 + 0.04 ´ 10 = 1.4 



Cache Type Example**
Consider building (a)16K byte I & D caches, or (b) a 32K byte unified 

cache. 
Let tcache is one cycle, tmemory is 10 cycles. 

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction fetches. 
tavg = (1+ 0.05 ´ 10) ´ 0.75 

+ (1 + 0.06 ´ 10) ´ 0.25 = 1.5 

(b) miss ratio is 4 % 
tavg = 1 + 0.04 ´ 10 = 1.4 WRONG! 
tavg = 1.4 + cycles-lost-to-interference 

Will cycles-lost-to-interference < 0.1? 
Not for “RISC” machines! 



A Miss Classification (3Cs or 4Cs) 

Cache misses can be classified as: 

Compulsory (a.k.a. cold start) 
The first access to a block 

Capacity
Misses that occur when a replaced block is re-referenced

Conflict (a.k.a. collision) 
Misses that occur because blocks are discarded because of the 

set-mapping strategy 

Coherence (shared-memory multiprocessors) 
Misses that occur because blocks are invalidated due to 

references by other processors


