
Chapter 2: Memory Hierarchy Design

Introduction (Section 2.1, Appendix B)

Caches
Review of basics (Section 2.1, Appendix B)
Advanced methods

Main Memory

Virtual Memory

Memory Hierarchies: Key Principles

Make the common case fast

Common ® Principle of locality

Fast ® Smaller is faster

Principle of Locality

Temporal locality

Spatial locality

Examples:

Principle of Locality**

Temporal locality
Locality in time
If a datum has been recently referenced, it is likely to be

referenced again
Spatial locality

Examples:

Principle of Locality**

Temporal locality
Locality in time
If a datum has been recently referenced, it is likely to be

referenced again
Spatial locality

Locality in space
When a datum is referenced, neighboring data are likely to be

referenced soon
Examples:

Principle of Locality**

Temporal locality
Locality in time
If a datum has been recently referenced, it is likely to be

referenced again
Spatial locality

Locality in space
When a datum is referenced, neighboring data are likely to be

referenced soon
Examples:

Temporal locality: Top of stack, Code in a loop
Spatial locality: Top of stack, Sequential instructions, Structure

references

Smaller is Faster

Registers are fastest memory
Smallest and most expensive

Static RAMs are faster than DRAMs
10X faster
10X less dense

DRAMs are faster than disk, flash

Memory Hierarchy

Registers

Cache

Memory

Disk

Type Size Speed (x proc. clk)
Registers
Cache
Memory
Disk, Flash

Memory Hierarchy**

Registers

Cache

Memory

Disk

Type Size Speed (x proc. clk)
Registers 32 to 128 I and F 1X
Cache 10s of KB to 10s of MB ~1 to 10X on-chip,

~10X off-chip
Memory GB ~100X
Disk, Flash GB to TB to … ~1000000X

© 2019 Elsevier Inc. All rights reserved. 10

Figure 2.1 The levels in a typical memory hierarchy in a personal mobile device (PMD), such as a cell phone or tablet (A), in
a laptop or desktop computer (B), and in a server (C). As we move farther away from the processor, the memory in the level
below becomes slower and larger. Note that the time units change by a factor of 109 from picoseconds to milliseconds in the case of
magnetic disks and that the size units change by a factor of 1010 from thousands of bytes to tens of terabytes. If we were to add
warehouse-sized computers, as opposed to just servers, the capacity scale would increase by three to six orders of magnitude.
Solid-state drives (SSDs) composed of Flash are used exclusively in PMDs, and heavily in both laptops and desktops. In many
desktops, the primary storage system is SSD, and expansion disks are primarily hard disk drives (HDDs). Likewise, many servers
mix SSDs and HDDs.

Memory Hierarchy Terminology
Block

Minimum unit that may be present
Usually fixed length

Hit – Block is found in upper level

Miss – Not found in upper level
Miss ratio – Fraction of references that miss

Hit Time – Time to access the upper level

Miss Penalty
Time to replace block in upper level, plus the time to deliver the

block to the CPU
Access time – Time to get first word
Transfer time – Time for remaining words

Memory Address

Block Names
Cache: Line
VM: Page

Memory Hierarchy Terminology

Block-frame address Offset
 0101010101010101011 01010101

Memory Hierarchy Performance
Indirect measures of time can be misleading

MIPS can be misleading
So can Miss ratio

Average (effective) access time is better
tavg =

Example:
thit = 1
tmiss = 20
miss ratio = .05

tavg =
Effective access time is still an indirect measure

Memory Hierarchy Performance**
Time is always the ultimate measure

Indirect measures can be misleading
MIPS can be misleading
So can Miss ratio

Average (effective) access time is better
tavg = thit + miss ratio ´ tmiss

= tcache + miss ratio ´ tmemory

Example:
thit = 1
tmiss = 20
miss ratio = .05

tavg =
Effective access time is still an indirect measure

Memory Hierarchy Performance**
Time is always the ultimate measure

Indirect measures can be misleading
MIPS can be misleading
So can Miss ratio

Average (effective) access time is better
tavg = thit + miss ratio ´ tmiss

= tcache + miss ratio ´ tmemory

Example:
thit = 1
tmiss = 20
miss ratio = .05

tavg = 1 + .05 ´ 20 = 2
Effective access time is still an indirect measure

Example

Poor question:
Q: What is a reasonable miss ratio?
A: 1%, 2%, 5%, 10%, 20% ???

A better question
Q: What is a reasonable tavg ?

(assume tcache = 1 cycle, tmemory = 20 cycles)
A: 1.2, 1.5, 2.0 cycles

What's a reasonable tavg ?

Example**

Poor question:
Q: What is a reasonable miss ratio?
A: 1%, 2%, 5%, 10%, 20% ???

A better question
Q: What is a reasonable tavg ?

(assume tcache = 1 cycle, tmemory = 20 cycles)
A: 1.2, 1.5, 2.0 cycles

What's a reasonable tavg ?
Depends upon base CPI
tavg = 2.0 might be OK for base CPI = 10,
but terrible for base CPI = 1.2

Example, cont.
Rearranging terms in

tavg = tcache + miss ratio ´ tmemory

to solve for miss ratios yields

miss =

Reasonable miss ratios (percent) - assume tcache = 1

Proportional to acceptable tavg degradation
Inversely proportional to tmemory

(tavg -tcache)
tmemory

tavg (cycles) tmemory
(cycles)

1.2 1.5 2.0

2 10.0 25.0 50.0
20 1.0 2.5 5.0

200 0.1 0.25 0.5

Basic Cache Questions

Block placement
Where can a block be placed in the cache?

Block Identification
How is a block found in the cache?

Block replacement
Which block should be replaced on a miss?

Write strategy
What happens on a write?

Cache Type
What type of information is stored in the cache?

Block Placement

FullyAssociative
Block goes in any block frame

Directmapped
Block goes in exactly one block frame
(Block frame #) mod (# of blocks)

SetAssociative
Block goes in exactly one set
(Block frame #) mod (# of sets)

Example: Consider cache with 8 blocks, where does block 12 go?

Block Identification

How to find the block?
Tag comparisons
Parallel search to speed lookup
Check valid bit

Example: Where do we search for block 12?

Example Cache

Block Replacement
Which block to replace on a miss?
Least recently used (LRU)

Optimize based on temporal locality
Replace block unused for longest time
State updates on nonMRU misses

Random
Select victim at random
Nearly as good as LRU, and easier

First-in First-out (FIFO)
Replace block loaded first

Optimal
?

Block Replacement **
Which block to replace on a miss?

Least recently used (LRU)
Optimize based on temporal locality
Replace block unused for longest time
State updates on non-MRU misses

Random
Select victim at random
Nearly as good as LRU, and easier

First-in First-out (FIFO)
Replace block loaded first

Optimal
Replace block used furthest in time

Write Policies

Writes are harder
Reads done in parallel with tag compare; writes are not
Thus, writes are often slower
(but processor need not wait)

On hits, update memory?
Yes writethrough (storethrough)
No writeback (storein, copyback)

On misses, allocate cache block?
Yes write-allocate (usually used w/ writeback)
No no-write-allocate (usually used w/ writethrough)

Write Policies, cont.
WriteBack

Update memory only on block replacement
Dirty bits used so clean blocks can be replaced without updating

memory
Traffic/Reference =
Traffic/Reference =
Less traffic for larger caches

WriteThrough
Update memory on each write
Write buffers can hide write latency (later)
Keeps memory uptodate (almost)
Traffic/Reference =

Write Policies, cont.**
WriteBack

Update memory only on block replacement
Dirty bits used so clean blocks can be replaced without updating

memory
Traffic/Reference = fractDirty ´ miss ´ B
Traffic/Reference = 1/2 ´ 0.05 ´ 4 = 0.10
Less traffic for larger caches

WriteThrough
Update memory on each write
Write buffers can hide write latency (later)
Keeps memory uptodate (almost)
Traffic/Reference =

Write Policies, cont.**
WriteBack

Update memory only on block replacement
Dirty bits used so clean blocks can be replaced without updating

memory
Traffic/Reference = fractDirty ´ miss ´ B
Traffic/Reference = 1/2 ´ 0.05 ´ 4 = 0.10
Less traffic for larger caches

WriteThrough
Update memory on each write
Write buffers can hide write latency (later)
Keeps memory uptodate (almost)
Traffic/Reference = fractionWrites = 0.20
Traffic independent of cache parameters

Cache Type

Unified (mixed)
Less costly
Dynamic response
Handles writes into Istream

Separate Instruction & Data (split, Harvard)
2x bandwidth
Place closer to I and D ports
Can customize
Poorman's associativity
No interlocks on simultaneous requests

Caches should be split if simultaneous instruction and data
accesses are frequent (e.g., RISCs)

Cache Type Example
Consider building (a)16K byte I & D caches, or (b) a 32K byte

unified cache.
Let tcache is one cycle, tmemory is 10 cycles.

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction
fetches.
tavg =

(b) miss ratio is 4 %
tavg =

Cache Type Example**
Consider building (a)16K byte I & D caches, or (b) a 32K byte

unified cache.
Let tcache is one cycle, tmemory is 10 cycles.

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction
fetches.
tavg = (1+ 0.05 ´ 10) ´ 0.75

+ (1 + 0.06 ´ 10) ´ 0.25 = 1.5

(b) miss ratio is 4 %
tavg =

Cache Type Example**
Consider building (a)16K byte I & D caches, or (b) a 32K byte unified

cache.
Let tcache is one cycle, tmemory is 10 cycles.

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction fetches.
tavg = (1+ 0.05 ´ 10) ´ 0.75

+ (1 + 0.06 ´ 10) ´ 0.25 = 1.5

(b) miss ratio is 4 %
tavg = 1 + 0.04 ´ 10 = 1.4

Cache Type Example**
Consider building (a)16K byte I & D caches, or (b) a 32K byte unified

cache.
Let tcache is one cycle, tmemory is 10 cycles.

(a) Imiss is 5 %, Dmiss is 6 %, 75 % of references are instruction fetches.
tavg = (1+ 0.05 ´ 10) ´ 0.75

+ (1 + 0.06 ´ 10) ´ 0.25 = 1.5

(b) miss ratio is 4 %
tavg = 1 + 0.04 ´ 10 = 1.4 WRONG!
tavg = 1.4 + cycles-lost-to-interference

Will cycles-lost-to-interference < 0.1?
Not for “RISC” machines!

A Miss Classification (3Cs or 4Cs)

Cache misses can be classified as:

Compulsory (a.k.a. cold start)
The first access to a block

Capacity
Misses that occur when a replaced block is re-referenced

Conflict (a.k.a. collision)
Misses that occur because blocks are discarded because of the

set-mapping strategy

Coherence (shared-memory multiprocessors)
Misses that occur because blocks are invalidated due to

references by other processors

