
Architecting and Programming a
Hardware-Incoherent Multiprocessor

Cache Hierarchy

Wooil Kim, Sanket Tavarageri, P. Sadayappan, Josep Torrellas

University of Illinois at Urbana-Champaign
Ohio State University

IPDPS 2016. May 2016

2

Motivation

•  Continued progress in transistor integration à 1,000 cores/chip
•  Need to improve energy efficiency

•  Example: Intel Runnemede [Carter HPCA 2013]

3

Intel Runnemede

•  Simplifies architecture:
•  Narrow-issue cores
•  Cores and memories hierarchically organized in clusters
•  Single address space
•  On-chip cache hierarchy without hardware cache coherence

•  Hardware-incoherent caches:
•  Easier to implement
•  How to program them?

4

Goal and Contributions

Goal: Programming environment for a hardware-incoherent cache hierarchy

Contributions:

•  Hardware extensions to manage hardware-incoherent caches
•  Flavors of Writeback (WB) and Self-invalidate (INV) instructions
•  Two small buffers next to the L1 cache
•  Hardware table in the cache controllers

•  Two user-friendly programming models
•  Rely on annotating synchronization operations and relatively

simple compiler analysis
•  Average performance only 5% lower than hardware-coherent caches

5

How to Ensure Data Coherence?

Hardware-incoherent caches do not rely on snooping or directory

P0 P1

wr x

rd x

sync

sync

WB x

INV x

P0 P1

shared level

private cache private cache

1. write A

2. writeback A

3. self-invalidate A

4. read A

6

WB and INV Instructions

•  Memory instructions that give commands to the cache controller

•  INV(Variable): self-invalidates variable from the local cache
–  Uses a per-line valid bit
–  Writes back dirty bytes in the line, then invalidates the line

•  Prevents losing any dirty data

V D Data Data Data Data D D D

•  WB(Variable): writes back variable to the shared cache
–  Cache lines have fine-grain dirty bits
–  WB operates on whole line but only writes back the modified bytes

•  Different cores don’t overwrite each other in case of false sharing

•  WB ALL, INV ALL // write back / invalidate the whole cache

7

Programming Models

1.  Shared-memory model inside each block and MPI across blocks
2.  Shared-memory across all cores

P0 P1 P2 P3 P4 P5 P6 P7

L2 cache L2 cache

L3 cache

P8 P9 P10 P11

L2 cache

Block 0 Block 1 Block 2

Model 1: Shared Inside Block + MPI across

8

P0

wr A
wr B
…
wr C
…
WB
sync
…

P1

…
sync
INV
…
rd A
rd B
…
rd C

What to writeback

What to invalidate

When to writeback

When to invalidate

9

Orchestrating Communication

•  Use synchronization as hints for communication
–  WB(vars) before every synchronization point; INV(vars) after
–  If communication variables cannot be computed, use WB/INV ALL

…
WB for E i-1
sync
INV for E i
…
WB for E i
sync
INV for E i+1
…

Epoch E i

Epoch E i+1

Epoch E i-1

Annotations for Different Communication Patterns

10

Barriers Critical
sections

Flags Dynamic
happens-before
epoch ordering

(e.g. task queue)

Need to detect data race communication and enforce it with WB/INV

11

Application Analysis

•  Instrumentation procedure
–  Analyze the communication patterns
–  If had sophisticated compiler, could do more efficient WB/INV

Application Barrier Critical Section/flag Dyn Happens-Before

FFT x
LU x

CHOLESKY x x x
BARNES x x x

RAYTRACE x x
VOLREND x x

OCEAN x x
WATER x x

Hardware Support for Small Critical Sections

•  Modified Entry Buffer (MEB):
–  For small code sections such as critical sections
–  Accumulates the written line entry numbers à WB only those at end

12

lock
wr A
wr B
wr B
…
// do not WB whole cache
unlock

way 0 way 1

{2, 0}
{4, 1}

cache MEB

Hardware Support for Small Critical Sections (II)

•  Invalidated Entry Buffer (IEB):
–  For small code sections such as critical sections
–  Accumulate invalidated line addresses à avoid invalidating twice

13

lock
// don’t inval whole cache
rd A
rd B
rd B
…
unlock

way 0 way 1

tag A
tag B

cache IEB

14

Programming Models

1.  Shared-memory model inside each block and MPI across blocks
2.  Shared-memory across all cores

P0 P1 P2 P3 P4 P5 P6 P7

L2 cache L2 cache

L3 cache

P8 P9 P10 P11

L2 cache

Block 0 Block 1 Block 2

Model 2: Shared-Memory Across All Cores

•  Inefficient solution: always WB/INV through L3 cache

15

P0 P1 P2 P3 P4 P5 P6 P7

L2 cache L2 cache

L3 cache

•  Propose: Level-adaptive WB and INV
–  WB/INV automatically communicate through the closest

shared level of the cache

•  Closest shared cache level depends of thread mapping, which
is unknown at compile time

Idea: Exploit Producer-Consumer Information

•  Software identifies producer-consumer thread pairs
–  (e.g., thread i produces data that will be consumed by thread j)

•  Threadàcore mapping unknown at compile time

16

Thread i

X =
…

WB_CONS(x,j)

Thread j

INV_PROD(x,i)

 …
 = X

Epoch Epoch

•  Software instruments the code with level-adaptive WB/INV
–  Producer: WB_CONS (addr, ConsID)
–  Consumer: INV_PROD (addr, ProdID)

17

Hardware Support for Level Adaptive WB/INV

•  L2 cache controller has a hardware table (ThreadMap)
–  Contains IDs of the threads that have been mapped in the block

•  When executing WB_CONS (addr, ConsID):
–  Hardware checks if ConsID is running on the block
–  If so: WB pushes data to L2 only; else, to both L2 and L3

•  Same when executing INV_PROD (addr, ProdID)

P0 P1 P2 P3 P4 P5 P6 P7

L2 cache

L3 cache

ThreadMap L2 cache ThreadMap

Th4 Th3 Th5 Th1 Th0 Th2 Th6 Th7

INV_PROD(T0)

WB_CONS(T7)

18

Compiler Support to Extract P-C Pairs

•  Approach: Use ROSE compiler to
–  Find P-C relation across OpenMP for constructs
–  Inter-procedural CFG
–  Dataflow analysis between potential P-C pairs

•  Assumption: Static scheduling of threads to processors

#pragma omp parallel for
for (i=0; i<N; i++) {
 A[i] = …;
 B[i] = …;
}

#pragma omp parallel for
for (i=0; i<N; i++) {
 … = A[i] + …;
 … = B[i+1] + …;
}

A[i]: Region(A, 0, N, # of threads)
= A: [(N/th)*myid, (N/th)*(myid+1))

B[i]: Region(A, 0, N, # of threads)
= B: [(N/th)*myid, (N/th)*(myid+1))

B[i+1]: Region(A, 1, N, # of threads)
= B: [(N/th)*myid +1, (N/th)*(myid+1) +1)

B[i]

B[i+1]

WB

INV WB_CONS
to myid-1

INV_PROD
for myid+1

19

Evaluation

•  SESC simulator
•  4-issue out-of-order cores with 32KB L1 caches
•  MESI Coherence protocol

HCC Directory hardware
cache coherence

Base Basic WB / INV
B+M Base + MEB
B+I Base + IEB
B+M+I Base + MEB + IEB

•  Intra-block experiments:
–  16 cores sharing a 2MB banked L2 cache
–  Each core: 16-entry MEB, 4-entry IEB
–  SPLASH2 applications

20

Execution Time

With MEB/IEB: average performance is only 2% lower than HCC

Not shown: network traffic also comparable

21

Evaluation

•  Inter-block experiments:
–  4 blocks of 8 cores each
–  Each block has a 1MB L2 cache
–  Blocks share a 16MB banked L3
–  NAS applications analyzed with the ROSE compiler

Base WB/INV all cached data to L3

Addr WB/INV selective data to L3 (compiler analysis)

Addr+L Level Adaptive: WB_CONS/INV_PROD

22

Execution Time

0

0.2

0.4

0.6

0.8

1

Jacobi EP IS CG

Base

Addr

Addr+L

•  When Level-Adaptive WB/INV is applicable, performance improves
–  EP,IS have reductions à no ordering, hence no P-C

•  Not shown: performance is on average 5% lower than HCC

23

Conclusions

•  Programming a hardware-incoherent cache hierarchy is challenging

•  Proposed HW extensions to manage it:
•  Flavors of WB and INV, including level-adaptive
•  Small MEB and IEB buffers next to the L1 cache
•  ThreadMap table in the cache controllers

•  Proposed two user-friendly programming models

•  Average performance only 5% lower than hardware-coherent caches

•  Future work: Enhance the performance with advanced compiler support

Architecting and Programming a
Hardware-Incoherent Multiprocessor

Cache Hierarchy

Wooil Kim, Sanket Tavarageri, P. Sadayappan, Josep Torrellas

University of Illinois at Urbana-Champaign
Ohio State University

IPDPS 2016. May 2016

25

Instruction Reordering by HW or Compiler

•  Instruction ordering requirement
–  WR à WB à Synchronization à INV à RD

RD

INV

RD

WR

WB

WR

WR

INV

WR

RD

WB

RD

Required

Desirable

•  Other orderings are desirable (e.g. to reduce traffic)
•  Cache lines can be evicted at any time

BACK-UP SLIDES

26

27

WB and INV Instructions

•  Operate at line granularity to minimize cache modifications
•  User unaware of the data placement
•  Granularity of dirty bits may vary (from byte to entire line)
•  Different flavors:

–  WB_byte // variable is a byte
–  WB_halfword
–  WB ALL // write back the whole cache
–  WB_L3 // push all the way to L3

28

Issued WB/INV

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Jacobi EP IS CG

WB to L3 in Addr

WB to L3 in Addr+L

INV L2 in Addr

INV L2 in Addr+L

Reduction in issued WB/INV in some applications

