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Motivation 

•  Continued progress in transistor integration à 1,000 cores/chip 
•  Need to improve energy efficiency 

•  Example: Intel Runnemede [Carter HPCA 2013] 
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Intel Runnemede 

•  Simplifies architecture: 
•  Narrow-issue cores 
•  Cores and memories hierarchically organized in clusters 
•  Single address space 
•  On-chip cache hierarchy without hardware cache coherence  

•  Hardware-incoherent caches:  
•  Easier to implement 
•  How to program them? 
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Goal and Contributions 

Goal:  Programming environment for a hardware-incoherent cache hierarchy 
 
Contributions:  

•  Hardware extensions to manage hardware-incoherent caches 
•  Flavors of Writeback (WB) and Self-invalidate (INV) instructions 
•  Two small buffers next to the L1 cache 
•  Hardware table in the cache controllers 

•  Two user-friendly programming models 
•  Rely on annotating synchronization operations and relatively 

simple compiler analysis 
•  Average performance only 5% lower than hardware-coherent caches 
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How to Ensure Data Coherence? 

Hardware-incoherent caches do not rely on snooping or directory 

P0 P1 

wr x 

rd x 

sync 

sync 

WB x 

INV x 

P0 P1 

shared level 

private cache private cache 

1. write A 

2. writeback A 

3. self-invalidate A 

4. read A 
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WB and INV Instructions 

•  Memory instructions that give commands to the cache controller 

 

•  INV(Variable): self-invalidates variable from the local cache 
–  Uses a per-line valid bit 
–  Writes back dirty bytes in the line, then invalidates the line 

•  Prevents losing any dirty data 

V D Data Data Data Data D D D 

•  WB(Variable): writes back variable to the shared cache 
–  Cache lines have fine-grain dirty bits 
–  WB operates on whole line but only writes back the modified bytes  

•  Different cores don’t overwrite each other in case of false sharing 

 

•  WB ALL, INV ALL           // write back / invalidate the whole cache 



7 

Programming Models 

1.  Shared-memory model inside each block and MPI across blocks 
2.  Shared-memory across all cores 

P0 P1 P2 P3 P4 P5 P6 P7 

L2 cache L2 cache 

L3 cache 

P8 P9 P10 P11 

L2 cache 

Block 0 Block 1 Block 2 



Model 1: Shared Inside Block + MPI across 
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P0 
 
wr A 
wr B 
… 
wr C 
… 
WB 
sync 
… 

P1 
 
 
 
 
 
 
 
 
… 
sync 
INV 
… 
rd A 
rd B 
… 
rd C 

What to writeback 

What to invalidate 

When to writeback 

When to invalidate 
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Orchestrating Communication 

•  Use synchronization as hints for communication 
–  WB(vars) before every synchronization point; INV(vars) after 
–  If communication variables cannot be computed, use WB/INV ALL 
 

… 
WB for E i-1 
sync 
INV for E i 
… 
WB for E i 
sync 
INV for E i+1 
… 

Epoch E i 

Epoch E i+1 

Epoch E i-1 



Annotations for Different Communication Patterns 

10 

Barriers Critical 
sections 

Flags Dynamic  
happens-before 
epoch ordering 

(e.g. task queue) 

Need to detect data race communication and enforce it with WB/INV  
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Application Analysis 

•  Instrumentation procedure 
–  Analyze the communication patterns 
–  If had sophisticated compiler, could do more efficient WB/INV 

Application Barrier Critical Section/flag Dyn Happens-Before 

FFT x 
LU x 

CHOLESKY x x x 
BARNES x x x 

RAYTRACE x x 
VOLREND x x 

OCEAN x x 
WATER x x 



Hardware Support for Small Critical Sections 

•  Modified Entry Buffer (MEB): 
–  For small code sections such as critical sections 
–  Accumulates the written line entry numbers  à WB only those at end 
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lock 
wr A 
wr B 
wr B 
… 
// do not WB whole cache 
unlock 

way 0 way 1 

{2, 0} 
{4, 1} 

cache MEB 



Hardware Support for Small Critical Sections (II) 

•  Invalidated Entry Buffer (IEB): 
–  For small code sections such as critical sections 
–  Accumulate invalidated line addresses à avoid invalidating twice 
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lock 
// don’t inval whole cache 
rd A 
rd B 
rd B 
… 
unlock 

way 0 way 1 

tag A 
tag B 

cache IEB 
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Programming Models 

1.  Shared-memory model inside each block and MPI across blocks 
2.  Shared-memory across all cores 

P0 P1 P2 P3 P4 P5 P6 P7 

L2 cache L2 cache 

L3 cache 

P8 P9 P10 P11 

L2 cache 

Block 0 Block 1 Block 2 



Model 2: Shared-Memory Across All Cores 

•  Inefficient solution: always WB/INV through L3 cache 
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P0 P1 P2 P3 P4 P5 P6 P7 

L2 cache L2 cache 

L3 cache 

•  Propose: Level-adaptive WB and INV 
–  WB/INV automatically communicate through the closest 

shared level of the cache 

•  Closest shared cache level depends of thread mapping, which 
is unknown at compile time  



Idea: Exploit Producer-Consumer Information 

•  Software identifies producer-consumer thread pairs  
–  (e.g., thread i produces data that will be consumed by thread j) 

•  Threadàcore mapping unknown at compile time  

16 

Thread i 
 
 
 
X =  
… 
 
WB_CONS(x,j) 

Thread j 
 
INV_PROD(x,i) 
 
    … 
    = X 

Epoch Epoch 

•  Software instruments the code with level-adaptive WB/INV 
–  Producer:  WB_CONS (addr, ConsID) 
–  Consumer: INV_PROD (addr, ProdID) 
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Hardware Support for Level Adaptive WB/INV 

•  L2 cache controller has a hardware table (ThreadMap)  
–  Contains IDs of the threads that have been mapped in the block 

•  When executing WB_CONS (addr, ConsID): 
–  Hardware checks if ConsID is running on the block 
–  If so: WB pushes data to L2 only; else, to both L2 and L3 

•  Same when executing INV_PROD (addr, ProdID) 

P0 P1 P2 P3 P4 P5 P6 P7 

L2 cache 

L3 cache 

ThreadMap L2 cache ThreadMap 

Th4 Th3 Th5 Th1 Th0 Th2 Th6 Th7 

INV_PROD(T0) 

WB_CONS(T7) 
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Compiler Support to Extract P-C Pairs 

•  Approach: Use ROSE compiler to 
–  Find P-C relation across OpenMP for constructs 
–  Inter-procedural CFG 
–  Dataflow analysis between potential P-C pairs 

•  Assumption:  Static scheduling of threads to processors 

#pragma omp parallel for  
for (i=0; i<N; i++) { 
  A[i] = …; 
  B[i] = …; 
} 
 
#pragma omp parallel for  
for (i=0; i<N; i++) { 
  … = A[i] + …; 
  … = B[i+1] + …; 
} 

A[i]: Region(A, 0, N, # of threads)  
= A: [ (N/th)*myid, (N/th)*(myid+1) ) 

B[i]: Region(A, 0, N, # of threads)  
= B: [ (N/th)*myid, (N/th)*(myid+1) ) 
 
B[i+1]: Region(A, 1, N, # of threads)  
= B: [ (N/th)*myid +1, (N/th)*(myid+1) +1) 

B[i] 

B[i+1] 

WB 

INV WB_CONS 
to myid-1 

INV_PROD 
for myid+1 
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Evaluation 

•  SESC simulator 
•  4-issue out-of-order cores with 32KB L1 caches 
•  MESI Coherence protocol 

HCC Directory hardware 
cache coherence 

Base Basic WB / INV 
B+M Base + MEB 
B+I Base + IEB 
B+M+I Base + MEB + IEB 

•  Intra-block experiments: 
–  16 cores sharing a 2MB banked L2 cache 
–  Each core: 16-entry MEB, 4-entry IEB 
–  SPLASH2 applications 
 



20 

Execution Time 

With MEB/IEB: average performance is only 2% lower than HCC  

Not shown: network traffic also comparable 
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Evaluation 

•  Inter-block experiments: 
–  4 blocks of 8 cores each 
–  Each block has a 1MB L2 cache 
–  Blocks share a 16MB banked L3 
–  NAS applications analyzed with the ROSE compiler 
 

Base WB/INV all cached data to L3 

Addr WB/INV selective data to L3 (compiler analysis) 

Addr+L Level Adaptive: WB_CONS/INV_PROD 
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Execution Time 

0 
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0.6 
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Jacobi EP IS CG 

Base 

Addr 

Addr+L 

•  When Level-Adaptive WB/INV is applicable, performance improves 
–  EP,IS have reductions à no ordering, hence no P-C 

•  Not shown: performance is on average 5% lower than HCC  
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Conclusions 

•  Programming a hardware-incoherent cache hierarchy is challenging 

•  Proposed HW extensions to manage it: 
•  Flavors of WB and INV, including level-adaptive 
•  Small MEB and IEB buffers next to the L1 cache 
•  ThreadMap table in the cache controllers 

•  Proposed two user-friendly programming models 

•  Average performance only 5% lower than hardware-coherent caches 
 
•  Future work: Enhance the performance with advanced compiler support 
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Instruction Reordering by HW or Compiler 

•  Instruction ordering requirement 
–  WR à WB à Synchronization à INV à RD 

 

RD 

INV 

RD 

WR 

WB 

WR 

WR 

INV 

WR 

RD 

WB 

RD 

Required  

Desirable  

•  Other orderings are desirable (e.g. to reduce traffic) 
•  Cache lines can be evicted at any time 

 

 



BACK-UP SLIDES 
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WB and INV Instructions 

•  Operate at line granularity to minimize cache modifications 
•  User unaware of the data placement 
•  Granularity of dirty bits may vary (from byte to entire line) 
•  Different flavors:  

–  WB_byte            // variable is a byte 
–  WB_halfword 
–  WB ALL             // write back the whole cache 
–  WB_L3              // push all the way to L3 
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Issued WB/INV 
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0.9 

1 

Jacobi EP IS CG 

WB to L3 in Addr 

WB to L3 in Addr+L 

INV L2 in Addr 

INV L2 in Addr+L 

Reduction in issued WB/INV in some applications 


