BREAKING THE MEMORY WALL

CS433 Fall 2015

Dimitrios Skarlatos
OUTLINE

• Introduction

• Current Trends in Computer Architecture

• 3D Die Stacking

• The memory Wall

• Conclusion
INTRODUCTION

- Ideal Scaling of power with feature size is long gone
- Current feature size 14nm (Skylake), 5nm by 2020
- Power Wall: consume exponentially increasing power with each factorial increase of frequency
- Memory Wall: growing disparity between CPU clock rates and off-chip memory and disk drive I/O rates.
SOLUTIONS

• Dark Silicon
• Accelerators
• NTC
• Go vertical!! 3D die stacking
DARK SILICON

- The amount of “silicon” that can not be powered on at nominal operating voltage for a given thermal design power (TDP) constraint.
M.B. Taylor: Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse
ACCELERATORS

- Specialized hardware -> High performance @ Low Power
- FPU (?)
- Video | Audio (H.264)
- GPUs - FPGAS
NEAR THRESHOLD COMPUTING
• ScalCore: Designing a Core for Voltage Scalability

• How to design a core to efficiently scale from Near threshold to High Performance Mode

B. Gopireddy et al. HPCA 2016
3D Die Stacking

<table>
<thead>
<tr>
<th>Metal Layer</th>
<th>Silicon</th>
</tr>
</thead>
</table>

One Die
3D DIE STACKING

Two Dies
Centip3De

Dreslinski, R.G et al: Centip3De: A 64-Core, 3D Stacked Near-Threshold System
Dreslinski, R.G et al: Centip3De: A 64-Core, 3D Stacked Near-Threshold System
Dreslinski, R.G et al: Centip3De: A 64-Core, 3D Stacked Near-Threshold System
TSV-Based 3D Die-Stacking Face-to-Face
MODELING

Heat Sink

Integraded Heat Spreader

Thermal Interface Material

Si

75 μm

12 μm

SiO2

30-1 μm nm

Cu | Al

12 μm

Cu | AL

12 μm

Si

75 μm

C4 pads

Package Substrate

BGA
3D BENEFITS

• Reduced interconnect length and power
• Smaller form factor
• Heterogeneity
• New micro-architectural possibilities
PARALLEL INTEGRATION

• Fabricate each die separately
• Use traditional fabrication process
• Plus an extra thinning process
• Connect the dies
PARALLEL 3D

• Die-to-die stacking

• Face-to-face: active layers facing each other

• Back-to-back: bulk layers facing each other

• Face-to-back: active layer of one facing the bulk of the other
THERMAL ISSUES

• Bonding layer required for stress related issues

• Bonding Layer (underfill) = 3\(\mu\text{m}\)

• Impedes heat flow from layer 0 to layer 1

• Thermal Conductivity BCB = 0.29 W/m-K

• E.g air = 0.03 W/m-K silicon 140 W/m-K
TSV ISSUES

• Through-Silicon Via (TSV) = 30-1 \(\mu m \)

• Copper (Cu) or Tungsten (W)

• Used to connect the layers

• We want high density of TSVs (more connections)

• Technology Constrained (KOZ + Aspect Ratio)
WHAT DO WE HAVE NOW?

As of June/July 2015 Radeon R9 Fury: Fiji Pro

2.5D is the flavor of the month
Breaking The Memory Wall
CHALLENGES OF MEMORIES

• Satisfy Bandwidth Requirements
• Reduce Power Consumption
• Low Cost
LATENCY

1 cycle

Register File

~4 cycles

L1 Cache

~10 cycles

L2 Cache

~40-80 cycles

L3 Cache

~100-400 cycles

Main Memory

Custom CMOS

SRAM

SRAM

SRAM/eDRAM

DRAM
RANDOM ACCESS MEMORIES

200GB/s - 4GB

GPU → GDDR5 → CPU → DDR4

80GB/s - 32GB

120GB/s - 256GB

1000GB/s - 16GB

GPU + HBM → CPU → DDR4

51GB/s - 1GB

24GB/s - 4GB

WideIO → LPDDR4

WideIO → LPDDR4

GPU → CPU
WHAT DO WE DO WITH SO MUCH MEMORY?

• Use it as a huge cache

• Use it as part of memory
ARCHITECTING DRAM CACHES

- Tag Storage
- Hit Latency
- Handle misses efficiently
3D DRAM AS CACHE

• Low lookup latency
• High hit rate
• Efficient off-chip BW use
• Data-granularity: page (4KB) vs block (64B)
BLOCK BASED - ALLOY CACHE

• 64B block
• Low off-chip BW utilization
• Low locality of data
• Store tags in the DRAM,
• Tag management becomes a problem
BLOCK BASED - ALLOY CACHE

• Store tags in SRAM is prohibitive (24MB for 256MB DRAM cache)

• Store tags in DRAM -> 2x the access time, 1 for the tag 1 for the data (Tag Serialization Latency)

• Solution: Store the tags with the data in the same Row
Moinuddin K. Qureshi et al. Fundamental Latency Trade-offs in Architecting DRAM Caches
BLOCK BASED - ALLOY CACHE

- MissMap keeps track of lines in the DRAM
- On miss go to off-chip without tag access
- Several MBs -> Place it in L3
- Access MissMap on every L3 miss
- Predictor Serialization Latency (PSL)

Moinuddin K. Qureshi et al. Fundamental Latency Trade-offs in Architecting DRAM Caches
BLOCK BASED - ALLOY CACHE

• More Acronyms

• Alloy Cache tightly alloys tag and data into a single entity called TAD (Tag and Data).

• Access MissMap and DRAM in parallel
PAGE BASED - FOOTPRINT CACHE

LH Cache

D. Jevdjc et al. Die-Stacked DRAM Caches for Servers
Hit Ratio, Latency, or Bandwidth? Have It All with Footprint Cache
PAGE BASED - FOOTPRINT CACHE

• Page granularity 4KB

• Fetch only the blocks that are likely to be touched in a page

• Page Allocation & Block Fetching

• Spatial Correlation Predictor (trigger prefetching and store the metadata(PC+Offset) for later)
PAGE BASED - UNISON CACHE

- Merge Alloy cache ideas with Footprint cache
OVERVIEW

<table>
<thead>
<tr>
<th></th>
<th>Alloy Cache</th>
<th>Footprint Cache</th>
<th>Unison Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache Miss Rate</td>
<td>Medium-High</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Hit Latency</td>
<td>Predictor + DRAM TAD Read</td>
<td>SRAM Tag + DRAM Data Read</td>
<td>Overlapped DRAM Tag + Data Reads</td>
</tr>
<tr>
<td>Miss Latency</td>
<td>Predictor Lookup</td>
<td>SRAM Tag Lookup</td>
<td>DRAM Tag Lookup</td>
</tr>
<tr>
<td>Associativity</td>
<td>Direct-mapped</td>
<td>32-way</td>
<td>4-way (two pages)</td>
</tr>
<tr>
<td>64B Blocks per 8KB Row</td>
<td>112</td>
<td>128</td>
<td>120-124</td>
</tr>
<tr>
<td>SRAM Tag Array @ 8GB</td>
<td>—</td>
<td>~48MB</td>
<td>—</td>
</tr>
<tr>
<td>In-DRAM Tag Size @ 8GB</td>
<td>1GB (12.5% of DRAM)</td>
<td>—</td>
<td>256-512MB (3.1-6.2% of DRAM)</td>
</tr>
<tr>
<td>Miss-Predictor Size</td>
<td>96B per core, 1.5KB total</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Way Predictor</td>
<td>—</td>
<td>144KB</td>
<td>1-16KB</td>
</tr>
<tr>
<td>Footprint History Table</td>
<td>—</td>
<td>144KB</td>
<td>144KB</td>
</tr>
<tr>
<td>Singleton Table</td>
<td>—</td>
<td>3KB</td>
<td>3KB</td>
</tr>
</tbody>
</table>

D. Jevdjic et al. Unison Cache: A Scalable and Effective Die-Stacked DRAM Cache
PART OF MEMORY (POM)

- Use the stacked DRAM as part of memory
- Fast memory (3D) - Slow memory (Off-chip)
- OS usage monitoring and managing pages
- Proposal: Hardware managed pages

J. Sim et al. Transparent Hardware Management of Stacked DRAM as Part of Memory
PART OF MEMORY (POM)

- Single address space
- Two-level indirection with remapping cache
- On request check segment remapping cache (SRC)
- On miss fetch from segment remapping table (SRT)
- On hit fetch the data from its location and update SRC

J. Sim et al. Transparent Hardware Management of Stacked DRAM as Part of Memory
PART OF MEMORY (POM)

- On miss: access SRC, access SRT, search SRT
- Segment-restricted remapping (page table physical address based) similar to Direct-Mapped Cache

J. Sim et al. Transparent Hardware Management of Stacked DRAM as Part of Memory
Line Location Table (LLT) tracks the physical location of memory lines
Line Location Predictor (LLP) predicts the physical address of the cache line

C Chou et al. CAMEO: A Two-Level Memory Organization with Capacity of Main Memory and Flexibility of Hardware-Managed Cache
CAMEO

C Chou et al. CAMEO: A Two-Level Memory Organization with Capacity of Main Memory and Flexibility of Hardware-Managed Cache
WHAT DO WE HAVE NOW?

HBM Modes

- **Cache mode**
 - No source changes needed to use
 - Misses are expensive (higher latency)
 - Needs HBM access + DDR access

- **Flat mode**
 - MCDRAM mapped to physical address space
 - Exposed as a NUMA node
 - Use numactl --hardware, lscpu to display configuration
 - Accessed through memkind library or numactl

- **Hybrid**
 - Combination of the above two
 - E.g., 8 GB in cache + 8 GB in Flat Mode
SUMMARY

• 3D Die stacking is happening (Intel, AMD, nVIDIA)

• How do we use all this memory efficiently is still an open question!!

• New architecture and microarchitecture paradigms