
Motivation

• Programmability

• Single global lock is easy but too conservative

• little concurrency

• multiple locks increases concurrency but is a lot harder to get it to work

• deadlocks and such

• size of critical sections also reduce concurrency

• TM, through the means of optimistic concurrency allows the simplicity of single 
global lock without losing concurrency



TM Implementation

• Main components: conflict detection and data versioning (buffering)

• Conflict detection: lazy, eager

• Versioning: lazy, eager

• Transactions all the time or only in parts of the program

• TM in HW and in SW: 

• differences and trade-offs

• Nesting issues: 

• open x closed nesting



Other Issues

• System

• OS syscalls

• I/O

• Overflow

• Other Uses

• TLS = TM + ordering

• aggressive optimizations like multiple-path execution


