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Types of Parallelism 

• Instruction Level Parallelism (ILP) 

– Between individual, independent instructions 

– Hardware can only look for ILP within an 
instruction-window size 

– Compilers can re-organize the instructions so that 
those that fall within the window are more 
independent 
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Types of Parallelism (II) 

• Thread Level Parallelism (TLP) 

– Compiler divides the program into multiple threads 
of control (each executing a set of instructions) 

– No need to look at a large window 

– Each thread can look at a smaller window 
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Waste 

• Horizontal waste 

• Vertical waste 

Issue slots 

Cycles 

Horizontal waste = 9 

Vertical waste = 8 

Useful = 11 
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Architectures 

• Superscalars: dependences cause vertical and horizontal waste 

• Multithreaded (traditional): eliminates vertical waste; 
dependences cause horizontal waste 

– fine-grained: Switches between threads every clock 

• Often done in a round-robin fashion 

• Skip any threads that are stalled 

• Hides latency, but slows down single thread 

• Examples: Sun Niagara, Nvidia GPUs 

– coarse-grained: Switches on costly operations (L2 or L3 
misses, synch) 

• Single thread runs faster 

• But pipeline startup cost slows down the context switch 

• Only research projects (Alewife) 
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Architectures 

• Multithreaded (modern): eliminates vertical and horizontal waste 

• Called Simultaneous Multithreading (SMT) 

– Implement fine-grain multithreading on top of a multiple issue dyn-
scheduled processor 

– Uses TLP to hide long-latency events  increase FU utilization 

– Key insight: register renaming + dyn scheduling allow multiple instructions 
from independent threads to be executed naturally. 

• Examples: Intel Core i7, IBM Power7 

 

 

• Question: would an SMT with single-issue proc make sense over 
fine-grain multithreading? 
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Simultaneous Multithreading 

• Multiple threads share functional units and issue slots in 
the same cycle 

• Advantages 

– Can utilize all the resources (less waste) 

– Can run single applications faster 

• Disadvantages 

– More complicated design: FU, issue slots are shared 

– Wire delays kill: slower frequency 

 

1 1 1 1 3 3 3 4 
1 1 3 3 4 



Copyright Josep Torrellas 2003, 2008 8 

Simultaneous Multithreading (SMT) 

• Alternative approaches 

– Simultaneous multithreading (SMT) 

– Chip multiprocessor (CMP) 

SMT CMP 

threads 

FUs 

Issue slots 
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Simultaneous Multithreading 

• Objectives: 

– Speedup one application (parallel) 

– Speedup a mix of serial applications (throughput) 

• How? Increase the use of slots by tolerating 

– memory latency (Cache, TLB miss..) 

– data dependence 

– control dependence 

– structural hazards 

• If a thread cannot use an issue slot, another one can 
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Discuss 2 Papers 

• Tullsen[1]: 1995 ISCA: Simultaneous multithreading: 
maximizing on-chip parallelism 

• Tullsen[2]: 1996 ISCA: Exploiting choice: instruction 
fetch and issue on an implementable SMT processor 
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8-Issue Superscalar: Where the 

Cycles Go? 

• Table 3 from paper by Tullsen[1] 

• Figure 2 from Tullsen[1] 
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Evaluation: Different Machine Models 

• In all cases, 8-issue machine 

• Fine-grain: only 1 thread/cycle 

• Full simultaneous issue: all 8 threads compete for 
each issue slot 

• Single issue/dual issue/four issue: each thread is 
limited to N slots/cycle 

• Limited connection: each thread is limited to 1 of 
each type of unit (still each FU is shared by at least 2 
threads) 
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Instruction Throughput 

• Figure 3 of Tullsen[1]: 

– fine grain multithreading 

– single issue per thread 

– full simultaneous issue 

– All models 
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Observations 

• Fine-grain: with a few threads, all vertical waste gone, 
but quite a bit of horizontal waste 

• Single-issue, Full-simultaneous issue: 

– better performance (higher throughput) 

– priority has effect 

• Four issue very close to full issue 

• Complexity? 
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Exploiting Choice (Tullsen[2]) 

• Throughput gain of SMT without extensive changes to 
superscalar 

• Base SMT: throughput 1.8x superscalar 

• Tuned SMT: 2.5x superscalar 

• SMT need not compromise single thread performance 

• Ability to choose the best instructions  favor threads 
most effectively using the processor 
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Changes to Support SMT (Fig 1) 

• Multiple PCs and a mechanism by which the FU selects 
one each cycle 

• Separate return address stack for each thread to predict 
subroutine destinations 

• Per-thread I-retirement, I-queue flush, and trap 

• Thread ID with each BTB to avoid predicting phantom 
branches 

• Large register file (arch regs for all threads + additional 
for reg renaming). The size of the reg file affects: 

– pipeline: +2 extra stages 

– scheduling of load-dependent instructions 
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Issues 

• Conventional instruction queue that contains I from all 
threads:  

– apparent dependences between threads removed w/ reg rename 

– when an I is ready, it is issued 

• Fetch from one PC round robin every cycle from those not 
experiencing an I-miss (refined later) 

• Large register file: 

– 2 cycles to read it 

– A “register write” stage (Fig 2) 
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Implications of Slower Reg Access 

• Increases distance between fetch and exec  Increase the branch 
misprediction +1 

• Extra cycle to write back  extra level of bypass logic 

• Increased distance between queue and exec  more time that 
wrong-path instructions remain in the pipeline after misprediction 
found 

• No increase in inter-instruction latency between dependent 
instructions (except loads)  consecutive cycles 

• 2 additional stages between rename and commit  increase the 
minimum time that a reg is held  increase pressure on regs 
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Case of Loads 

• Since I are scheduled a cycle earlier (relative to exec 
cycle), load hit latency increases +1 (to 2 cycles) 

• To handle this case: 

– schedule load-dependent instructions assuming a 1-cycle data 
latency but squash those instructions in the case of an L1 
cache miss or bank conflict ---> Optimistic Issue 

• Performance costs of OI: 

– Optimistically issued I that get squashed: waste issue cycles 

– Optimistic instructions must still be held in the IQ an extra 
cycle after they are issued, until it is known that they will not 
be squashed 
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Overall Claims 

• I-scheduling no more complex than on a dynamically-
scheduled superscalar 

• Reg file data paths are no more complex than in 
superscalar, and the perfomance hit of the large reg file 
+ extended pipe are small 

• Required fetch throughput is attainable, even without 
any increase in fetch bandwidth 

• Unmodified cache and branch prediction do not thrash 

• Even aggressive superscalar technologies such as 
dynamic scheduling and spec execution are no match for 
SMT  
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Simulated Machine 

• Fetch and decode at most 8 instructions/cycle 

• Each cycle, one thread is given control of the fetch unit, 
chosen among those not stalled due to a I-cache miss 

• Study different fetch policies: 

– partition the fetch unit among threads (fetch from multiple 
threads) 

– improve the quality of the instructions fetched 

– eliminate the conditions that block the fetch unit 
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Improve the Quality: Use Feedback 

• Round robin 

• BRCOUNT: highest priority to threads that are least likely to 
be on a wrong path:  

– count the branch instructions that are in the decode, rename, 
and queue stages, favoring those with fewer unresolved 
branches 

• MISSCOUNT: Attack IQ clog: give priority to threads that 
have the fewest outstanding D cache misses 

• ICOUNT: priority to threads with fewest I in decode, rename, 
and queue. Goal: 

– prevents any one thread from filling IQ 

– gives highest priority to threads that move I efficiently 

– even mix of instructions from all threads  
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Improve the Quality: Use Feedback 

• IQPOSN: lowest priority to threads with I closest to the 
head of either the I of FP instruction queues  oldest 
instructions 

 

• Fig 5 of Tullsen[2] 

 


