
Copyright Josep Torrellas 2003, 2008, 2013 1

Multithreading

Instructor: Josep Torrellas

CS433

Copyright Josep Torrellas 2003, 2008 2

Types of Parallelism

• Instruction Level Parallelism (ILP)

– Between individual, independent instructions

– Hardware can only look for ILP within an
instruction-window size

– Compilers can re-organize the instructions so that
those that fall within the window are more
independent

Copyright Josep Torrellas 2003, 2008 3

Types of Parallelism (II)

• Thread Level Parallelism (TLP)

– Compiler divides the program into multiple threads
of control (each executing a set of instructions)

– No need to look at a large window

– Each thread can look at a smaller window

Copyright Josep Torrellas 2003, 2008 4

Waste

• Horizontal waste

• Vertical waste

Issue slots

Cycles

Horizontal waste = 9

Vertical waste = 8

Useful = 11

X X X

X X

X

X

X

X X X

Copyright Josep Torrellas 2003, 2008 5

Architectures

• Superscalars: dependences cause vertical and horizontal waste

• Multithreaded (traditional): eliminates vertical waste;
dependences cause horizontal waste

– fine-grained: Switches between threads every clock

• Often done in a round-robin fashion

• Skip any threads that are stalled

• Hides latency, but slows down single thread

• Examples: Sun Niagara, Nvidia GPUs

– coarse-grained: Switches on costly operations (L2 or L3
misses, synch)

• Single thread runs faster

• But pipeline startup cost slows down the context switch

• Only research projects (Alewife)

Copyright Josep Torrellas 2003, 2008 6

Architectures

• Multithreaded (modern): eliminates vertical and horizontal waste

• Called Simultaneous Multithreading (SMT)

– Implement fine-grain multithreading on top of a multiple issue dyn-
scheduled processor

– Uses TLP to hide long-latency events increase FU utilization

– Key insight: register renaming + dyn scheduling allow multiple instructions
from independent threads to be executed naturally.

• Examples: Intel Core i7, IBM Power7

• Question: would an SMT with single-issue proc make sense over
fine-grain multithreading?

Copyright Josep Torrellas 2003, 2008 7

Simultaneous Multithreading

• Multiple threads share functional units and issue slots in
the same cycle

• Advantages

– Can utilize all the resources (less waste)

– Can run single applications faster

• Disadvantages

– More complicated design: FU, issue slots are shared

– Wire delays kill: slower frequency

1 1 1 1 3 3 3 4
1 1 3 3 4

Copyright Josep Torrellas 2003, 2008 8

Simultaneous Multithreading (SMT)

• Alternative approaches

– Simultaneous multithreading (SMT)

– Chip multiprocessor (CMP)

SMT CMP

threads

FUs

Issue slots

Copyright Josep Torrellas 2003, 2008 9

Simultaneous Multithreading

• Objectives:

– Speedup one application (parallel)

– Speedup a mix of serial applications (throughput)

• How? Increase the use of slots by tolerating

– memory latency (Cache, TLB miss..)

– data dependence

– control dependence

– structural hazards

• If a thread cannot use an issue slot, another one can

Copyright Josep Torrellas 2003, 2008 10

Discuss 2 Papers

• Tullsen[1]: 1995 ISCA: Simultaneous multithreading:
maximizing on-chip parallelism

• Tullsen[2]: 1996 ISCA: Exploiting choice: instruction
fetch and issue on an implementable SMT processor

Copyright Josep Torrellas 2003, 2008 11

8-Issue Superscalar: Where the

Cycles Go?

• Table 3 from paper by Tullsen[1]

• Figure 2 from Tullsen[1]

Copyright Josep Torrellas 2003, 2008 12

Evaluation: Different Machine Models

• In all cases, 8-issue machine

• Fine-grain: only 1 thread/cycle

• Full simultaneous issue: all 8 threads compete for
each issue slot

• Single issue/dual issue/four issue: each thread is
limited to N slots/cycle

• Limited connection: each thread is limited to 1 of
each type of unit (still each FU is shared by at least 2
threads)

Copyright Josep Torrellas 2003, 2008 13

Instruction Throughput

• Figure 3 of Tullsen[1]:

– fine grain multithreading

– single issue per thread

– full simultaneous issue

– All models

Copyright Josep Torrellas 2003, 2008 14

Observations

• Fine-grain: with a few threads, all vertical waste gone,
but quite a bit of horizontal waste

• Single-issue, Full-simultaneous issue:

– better performance (higher throughput)

– priority has effect

• Four issue very close to full issue

• Complexity?

Copyright Josep Torrellas 2003, 2008 15

Exploiting Choice (Tullsen[2])

• Throughput gain of SMT without extensive changes to
superscalar

• Base SMT: throughput 1.8x superscalar

• Tuned SMT: 2.5x superscalar

• SMT need not compromise single thread performance

• Ability to choose the best instructions favor threads
most effectively using the processor

Copyright Josep Torrellas 2003, 2008 16

Changes to Support SMT (Fig 1)

• Multiple PCs and a mechanism by which the FU selects
one each cycle

• Separate return address stack for each thread to predict
subroutine destinations

• Per-thread I-retirement, I-queue flush, and trap

• Thread ID with each BTB to avoid predicting phantom
branches

• Large register file (arch regs for all threads + additional
for reg renaming). The size of the reg file affects:

– pipeline: +2 extra stages

– scheduling of load-dependent instructions

Copyright Josep Torrellas 2003, 2008 17

Issues

• Conventional instruction queue that contains I from all
threads:

– apparent dependences between threads removed w/ reg rename

– when an I is ready, it is issued

• Fetch from one PC round robin every cycle from those not
experiencing an I-miss (refined later)

• Large register file:

– 2 cycles to read it

– A “register write” stage (Fig 2)

Copyright Josep Torrellas 2003, 2008 18

Implications of Slower Reg Access

• Increases distance between fetch and exec Increase the branch
misprediction +1

• Extra cycle to write back extra level of bypass logic

• Increased distance between queue and exec more time that
wrong-path instructions remain in the pipeline after misprediction
found

• No increase in inter-instruction latency between dependent
instructions (except loads) consecutive cycles

• 2 additional stages between rename and commit increase the
minimum time that a reg is held increase pressure on regs

Copyright Josep Torrellas 2003, 2008 19

Case of Loads

• Since I are scheduled a cycle earlier (relative to exec
cycle), load hit latency increases +1 (to 2 cycles)

• To handle this case:

– schedule load-dependent instructions assuming a 1-cycle data
latency but squash those instructions in the case of an L1
cache miss or bank conflict ---> Optimistic Issue

• Performance costs of OI:

– Optimistically issued I that get squashed: waste issue cycles

– Optimistic instructions must still be held in the IQ an extra
cycle after they are issued, until it is known that they will not
be squashed

Copyright Josep Torrellas 2003, 2008 20

Overall Claims

• I-scheduling no more complex than on a dynamically-
scheduled superscalar

• Reg file data paths are no more complex than in
superscalar, and the perfomance hit of the large reg file
+ extended pipe are small

• Required fetch throughput is attainable, even without
any increase in fetch bandwidth

• Unmodified cache and branch prediction do not thrash

• Even aggressive superscalar technologies such as
dynamic scheduling and spec execution are no match for
SMT

Copyright Josep Torrellas 2003, 2008 21

Simulated Machine

• Fetch and decode at most 8 instructions/cycle

• Each cycle, one thread is given control of the fetch unit,
chosen among those not stalled due to a I-cache miss

• Study different fetch policies:

– partition the fetch unit among threads (fetch from multiple
threads)

– improve the quality of the instructions fetched

– eliminate the conditions that block the fetch unit

Copyright Josep Torrellas 2003, 2008 22

Improve the Quality: Use Feedback

• Round robin

• BRCOUNT: highest priority to threads that are least likely to
be on a wrong path:

– count the branch instructions that are in the decode, rename,
and queue stages, favoring those with fewer unresolved
branches

• MISSCOUNT: Attack IQ clog: give priority to threads that
have the fewest outstanding D cache misses

• ICOUNT: priority to threads with fewest I in decode, rename,
and queue. Goal:

– prevents any one thread from filling IQ

– gives highest priority to threads that move I efficiently

– even mix of instructions from all threads

Copyright Josep Torrellas 2003, 2008 23

Improve the Quality: Use Feedback

• IQPOSN: lowest priority to threads with I closest to the
head of either the I of FP instruction queues oldest
instructions

• Fig 5 of Tullsen[2]

