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Progress Towards Multiprocessors 

+ Rate of  speed growth in uniprocessors saturated 
+ Wide-issue processors are very complex 
+ Wide-issue processors consume a lot of power 
+ Steady progress in parallel software : the major obstacle to 

parallel processing  
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Flynn’s Classification of Parallel Architectures 
According to the parallelism in I and D stream 
•  Single I stream , single D stream (SISD): uniprocessor 
•  Single I stream , multiple D streams(SIMD) : same I 

executed by multiple processors using diff D 
–  Each processor has its own data memory 
–  There is a single control processor that sends the same I 

to all processors 
–  These processors are usually special purpose 
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•  Multiple I streams, single D stream (MISD) : no 
commercial machine 

•  Multiple I streams, multiple D streams (MIMD) 
–  Each processor fetches its own instructions and 

operates on its own data 
–  Architecture of choice for general purpose mps 
–  Flexible: can be used in single user mode or 

multiprogrammed 
–  Use of the shelf µprocessors 
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MIMD Machines 
1. Centralized shared memory architectures 

–  Small #’s of processors (≈ up to 16-32) 
–  Processors share a centralized memory 
–  Usually connected in a bus 
–  Also called UMA machines ( Uniform Memory Access) 

2. Machines w/physically distributed memory 
–  Support many processors 
–  Memory distributed among processors 
–  Scales the mem bandwidth if most of the accesses are to 

local mem 
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Figure 5.1 
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Figure 5.2 
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2. Machines w/physically distributed memory (cont) 
–  Also reduces the memory latency 
–  Of course interprocessor communication is more costly 

and complex 
–  Often each node is a cluster (bus based multiprocessor) 
–  2 types, depending on method used for interprocessor 

communication: 
 1. Distributed shared memory (DSM) or scalable  
    shared memory 
 2. Message passing machines or multicomputers 
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DSMs : 
•  Memories addressed as one shared address space: processor 

P1 writes address X, processor P2 reads address X 
•  Shared memory means that some address in 2 processors 

refers to same mem location; not that mem is centralized 
•  Also called NUMA (Non Uniform Memory Access) 
•  Processors communicate implicitly via loads and stores 

Multicomputers: 
•  Each processor has its own address space , disjoint to other 

processors , cannot be addressed by other processors 
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•  The same physical address on 2 diff processors refers to 2 
diff locations in 2 diff memories 

•  Each proc-mem is a diff computer 
•  Processes communicate explicitly via passing of messages 

among them 
 e.g. messages to request / send data 
       to perform some operation on remote data 
  → Synchronous msg passing : initializing processor sends a 

 request and waits for a reply before continuing 
  → Asynchronous msg passing … does not wait 
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→ Processors are notified of the arrival of a msg  
   → polling 
   → interrupt 

→ Standard message passing libraries: message passing 
interface (MPI) 
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Shared memory communication 
+ Compatibility w/well understood mechanisms in centralized 

mps 
+ Easy of programming /compiler design for pgms w/

irregular communication patterns 
+ Lower overhead of communication 

 better use of bandwidth when using small communications 
+ Reduced remote communication by using automatic 

caching of data 
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Msg-passing Communication  
+ Simpler hardware (no support for cache coherence in HW) 
± Communication is explicit → Painful  

              → Forces programmers and  
     compilers to pay attention/ 
     optimize communication
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Challenges in Parallel Processing  
1) Serial sections  
e.g. To have a speedup of 80 w/100 processor, what fraction 

of  original computation can be sequential ? 
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Amdahl’s law: 
 
 
 
fparallel  = 99.75%   fparallel =  0.25% 
2) Large latency of remote accesses (50-1,000 clock cycles) 
 
 

Speedup =  1 

(1- fenh)  + 
Fenh 

Spenh 

1 

( 1- fparallel ) + fparallel 

100 

= =  80 

Example : 0.5 ns machine has a round 

trip latency of 200 ns. 0.2% of 
instructions cause a cache miss 

(processor stall).   Base CPI without 
misses is 0.5. 

Whats new CPI ? 

CPI = 0.5 + 0.2% * 200/0.5 = 1.3 
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The Cache Coherence Problem 
•  Caches are critical to modern high-speed processors 
•  Multiple copies of a block can easily get inconsistent  

–  processor writes. I/O writes,.. 
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Memory 
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Hardware Solutions 
•  The schemes can be classified based on : 

–  Snoopy schemes vs. Directory schemes 
–  Write through vs. write-back (ownership-based) protocols 
–  Update vs. invalidation protocols 



18 

Snoopy Cache Coherence Schemes  
•  A distributed  cache coherence scheme based on the notion 

of a snoop that watches all activity on a global bus, or is 
informed about such activity by some global broadcast 
mechanism. 
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Write Through Schemes 
•  All processor writes result in : 

–  Update of local cache and a global bus write that : 
•  updates main memory 
•  invalidates/updates all other caches with that item 

•  Advantage : Simple to implement   
•  Disadvantages : Since ~15% of references are writes, this 

scheme consumes tremendous bus bandwidth . Thus only a 
few processors can be supported. 

 ⇒ Need for dual tagging caches in some cases 
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Write-Back/Ownership Schemes 
•  When a single cache has ownership of a block, processor 

writes do not result in bus writes thus conserving 
bandwidth. 

•  Most bus-based multiprocessors nowadays use such 
schemes.  

•  Many variants of ownership-based protocols exist: 
–  Goodman’s write -once scheme 
–  Berkley ownership scheme  
–  Firefly update protocol 
–  … 
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Invalidation vs. Update Strategies 
 
1. Invalidation : On a write, all other caches with a copy are invalidated  
2. Update : On a write, all other caches with a copy are updated 
•  Invalidation is bad when :  

–  single producer and many consumers of data. 
•  Update is bad when : 

–  multiple writes by one PE before data is read by another PE. 
–  Junk data accumulates in large caches  (e.g. process migration). 

•  Overall, invalidation schemes are more popular as the default. 
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Invalidation, Ownership-based 
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Illinois Scheme 
•  States: I, VE (valid-exclusive), VS (valid-shared), D (dirty) 
•  Two features : 

–  The cache knows if it has an valid-exclusive (VE) copy. In VE 
state no invalidation traffic on write-hits. 

–  If some cache has a copy, cache-cache transfer is used. 
•  Advantages: 

–  closely approximates traffic on a uniprocessor for sequential pgms. 
–  In large cluster-based machines, cuts down latency 

•  Disadvantages: 
–  complexity of mechanism that determines exclusiveness 
–  memory needs to wait before sharing status is determined  
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DEC Firefly Scheme 
•  Classification: Write-back, update, no-dirty-sharing. 
•  States : 

–  VE (valid exclusive): only copy and clean 
–  VS (valid shared) : shared -clean copy. Write hits result 

in updates to memory and other caches and entry remains 
in this state 

–  D(dirty): dirty exclusive (only copy) 
•  Used special “shared line” on bus to detect sharing status of 

cache line  
•  Supports producer-consumer model well 

•  What about sequential processes migrating between CPU’s?  
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Directory Based Cache Coherence  

Key idea :keep track in a global directory (in main 
memory) which processors are caching a location 
and the state. 
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Basic Scheme (Censier and Feautrier) 

   Read from main-memory by PE_i 
–  If dirty bit is off then {read from main memory;turn p[i] ON; } 
–  If dirty bit is ON then {recall line from dirty PE (cache state to 

shared); update memory; turn dirty-bit OFF;turn p[i] ON; supply 
recalled data to PE_i;} 

    

p p 

Interconnection network 

cache cache 

Directory 

Dirty bit K Presence bits 

memory 

• Assume K processors 

• With each cache-block in 
memory: K presence bits and 1 
dirty bit 

• With each cache-block in cache : 
1 valid bit and 1 dirty (owner) bit 

Read  

Miss 
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 If dirty bit ON then {recall the data from owner PE which 
invalidates itself; (update memory); clear bit of previous 
owner; forward data to PE i; turn bit PE[I] on; (dirty bit 
ON all the time) } 

 Write- hit to data valid (not owned ) in cache: {access 
memory-directory; send invalidations to all PE’s caching 
block; clear their P[k] bits; supply data to PE i ; turn dirty 
bit ON ; turn PE[i] ON } 

Write  

Miss 

Write  

Hit 

Non -
owned 

data 

 
     If dirty-bit OFF then {supply data to PE_i; send 

invalidations to all PE’s caching that block and clear their 
P[k] bits; turn dirty bit ON; turn P[i] ON; .. } 
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Synchronization 
•  Typically → built w/ user level software routines 

           → that rely on hardware-based synch primitives 
•  Small machines: uninterruptible instruction that atomically 

retrieves & changes a value. 
 Software synchronization mechanisms are then constructed 
on top of it. 

•  Large scale machines : powerful hardware - supported 
synchronization primitives 

Key: ability  to atomically read and modify a mem-location  
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→ Users are not expected to use the hardware mechanisms 
directly  

→ Instead : systems programmers build a synchronization 
library : locks,etc . 

 
Examples of Primitives  
 
1) Atomic exchange : interchanges a value in a reg. For  a 

value in memory  
 e.g. lock = 0  free 
             1  taken  

    processor tries to get a lock by exchanging a 1 in a register 
with the lock memory location   
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  •  If value returned = 1 : some other processor had grabbed it 
•  If value returned = 0 : you got it 

         no one else can since already 1  
•  Can there be any races ? (e.g. both get 1) 
•  Consider the read - write was  2 instructions 

2)  Test-and-set : test a value & set it  
 e.g. test for a zero and set to 1 

 
3) Fetch-and increment : return the value & increment it  

 0 means that the synch var is unclaimed    
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A Second Approach : 2 instructions  
•  Having 1 atomic read-write may be complex 
•  Have 2 instructions : the 2nd instruction returns a value 

from which it can be deduced whether the pair was 
executed as if atomic 

•  e.g. MIPS “load linked” and  “store conditional’ 
–  If the contents of the location read by the LL change 

before the SC to the same address → SC fails 
–  If the processor context switches between the two → 

SC also fails   



34 

  –  The SC returns a value indicating whether it failed / 
succeeded  

–  The LL returns the initial value 

Atomic exchange :  
 try : mov  R3, R4 
  ll       R2,0(R1) 
  sc      R3,0(R1)  
  beqz  R3,try 
  mov   R4,R2 

/* at end : R4 and 0(R1) have been atomically exchanged */  
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  •  If another proc intervenes and modifies the value between 
ll, sc → sc returns 0 (and fails) 

•  Can also be used for atomic fetch-and -increment  

 try :    ll        R2,0(R1) 
     addi   R3,R2,#1 
     sc       R3,0(R1) 

               beqz   R3,try  
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Implementing Locks 
•  Given an atomic operation → use the coherence 

mechanisms of an MP to implement spin locks 

•  Spin Locks: locks that a processor  continuously tries to 
acquire , spinning in a loop 

  + grabs the lock immediately after it is freed  
  - tie up the processor 

 
1)  If no cache coherence : 

–  Keep the lock in memory  
–  to get lock : continuously exchange in a loop 
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  •  To release the lock : write a 0 to it  
  daddui       R2,R0,#1 

lockit : exch  R2,0(R1) 
  bnez  R2,lockit 

 
2)  If cache coherence  
•  Try to cache the lock → no need to access memory ; can 

spin in the cache 
•  Since “locality’ in lock accesses : processor that last 

acquired it will acquire it next → will reside in the cache 
of that processor  
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  •  However : cannot keep spinning w/a write → invalidate 
everyone → bus traffic to reload lock  

•  Need to do only reads until it sees that the lock is available 
→ then an exchange  
test and test and set 
lockit :     ld      R2,0(R1) 

            bnez   R2,lockit 
            daddui        R2,R0,#1 

                exch    R2,0(R1) 
                bnez    R2,lockit      
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See  Figure 5.24 
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  •  Can do same thing w/ll-sc 
 lockit :  ll       R2,0(R1) 
   bnez  R2,lockit 
   daddui        R2,R0,#1 

                        sc       R2,0(R1) 
                        beqz   R2,lockit ; 0 means SC failed 
 
Problem of spin locks : not scalable → lots of traffic when the 

lock is released if many processes waiting  
  

20 

Each proc tries to 

lock a var 
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  •  One processor release lock → invalidates    1 bus transaction  
          everybody     

•  All processors read miss                                19 bus trans 
•  All processors do an exchange                     many bus trans 

 exchanges invalidate other processors       
  


