
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 5

Thread-Level Parallelism
Instructor: Josep Torrellas

CS433

2

Progress Towards Multiprocessors

+ Rate of speed growth in uniprocessors saturated
+ Wide-issue processors are very complex
+ Wide-issue processors consume a lot of power
+ Steady progress in parallel software : the major obstacle to

parallel processing

3

Flynn’s Classification of Parallel Architectures
According to the parallelism in I and D stream
•  Single I stream , single D stream (SISD): uniprocessor
•  Single I stream , multiple D streams(SIMD) : same I

executed by multiple processors using diff D
–  Each processor has its own data memory
–  There is a single control processor that sends the same I

to all processors
–  These processors are usually special purpose

4

•  Multiple I streams, single D stream (MISD) : no
commercial machine

•  Multiple I streams, multiple D streams (MIMD)
–  Each processor fetches its own instructions and

operates on its own data
–  Architecture of choice for general purpose mps
–  Flexible: can be used in single user mode or

multiprogrammed
–  Use of the shelf µprocessors

5

MIMD Machines
1. Centralized shared memory architectures

–  Small #’s of processors (≈ up to 16-32)
–  Processors share a centralized memory
–  Usually connected in a bus
–  Also called UMA machines (Uniform Memory Access)

2. Machines w/physically distributed memory
–  Support many processors
–  Memory distributed among processors
–  Scales the mem bandwidth if most of the accesses are to

local mem

6

Figure 5.1

7

Figure 5.2

8

2. Machines w/physically distributed memory (cont)
–  Also reduces the memory latency
–  Of course interprocessor communication is more costly

and complex
–  Often each node is a cluster (bus based multiprocessor)
–  2 types, depending on method used for interprocessor

communication:
 1. Distributed shared memory (DSM) or scalable
 shared memory
 2. Message passing machines or multicomputers

9

DSMs :
•  Memories addressed as one shared address space: processor

P1 writes address X, processor P2 reads address X
•  Shared memory means that some address in 2 processors

refers to same mem location; not that mem is centralized
•  Also called NUMA (Non Uniform Memory Access)
•  Processors communicate implicitly via loads and stores

Multicomputers:
•  Each processor has its own address space , disjoint to other

processors , cannot be addressed by other processors

10

•  The same physical address on 2 diff processors refers to 2
diff locations in 2 diff memories

•  Each proc-mem is a diff computer
•  Processes communicate explicitly via passing of messages

among them
 e.g. messages to request / send data
 to perform some operation on remote data
 → Synchronous msg passing : initializing processor sends a

 request and waits for a reply before continuing
 → Asynchronous msg passing … does not wait

11

→ Processors are notified of the arrival of a msg
 → polling
 → interrupt

→ Standard message passing libraries: message passing
interface (MPI)

12

Shared memory communication
+ Compatibility w/well understood mechanisms in centralized

mps
+ Easy of programming /compiler design for pgms w/

irregular communication patterns
+ Lower overhead of communication

 better use of bandwidth when using small communications
+ Reduced remote communication by using automatic

caching of data

13

Msg-passing Communication
+ Simpler hardware (no support for cache coherence in HW)
± Communication is explicit → Painful

 → Forces programmers and
 compilers to pay attention/
 optimize communication

14

Challenges in Parallel Processing
1) Serial sections
e.g. To have a speedup of 80 w/100 processor, what fraction

of original computation can be sequential ?

15

Amdahl’s law:

fparallel = 99.75% fparallel = 0.25%
2) Large latency of remote accesses (50-1,000 clock cycles)

Speedup = 1

(1- fenh) +
Fenh

Spenh

1

(1- fparallel) + fparallel

100

= = 80

Example : 0.5 ns machine has a round

trip latency of 200 ns. 0.2% of
instructions cause a cache miss

(processor stall). Base CPI without
misses is 0.5.

Whats new CPI ?

CPI = 0.5 + 0.2% * 200/0.5 = 1.3

16

The Cache Coherence Problem
•  Caches are critical to modern high-speed processors
•  Multiple copies of a block can easily get inconsistent

–  processor writes. I/O writes,..

P P

Cache Cache
A = 5 A = 5 3

A = 7

Memory
A = 5 1 2

17

Hardware Solutions
•  The schemes can be classified based on :

–  Snoopy schemes vs. Directory schemes
–  Write through vs. write-back (ownership-based) protocols
–  Update vs. invalidation protocols

18

Snoopy Cache Coherence Schemes
•  A distributed cache coherence scheme based on the notion

of a snoop that watches all activity on a global bus, or is
informed about such activity by some global broadcast
mechanism.

19

Write Through Schemes
•  All processor writes result in :

–  Update of local cache and a global bus write that :
•  updates main memory
•  invalidates/updates all other caches with that item

•  Advantage : Simple to implement
•  Disadvantages : Since ~15% of references are writes, this

scheme consumes tremendous bus bandwidth . Thus only a
few processors can be supported.

 ⇒ Need for dual tagging caches in some cases

20

Write-Back/Ownership Schemes
•  When a single cache has ownership of a block, processor

writes do not result in bus writes thus conserving
bandwidth.

•  Most bus-based multiprocessors nowadays use such
schemes.

•  Many variants of ownership-based protocols exist:
–  Goodman’s write -once scheme
–  Berkley ownership scheme
–  Firefly update protocol
–  …

21

Invalidation vs. Update Strategies

1. Invalidation : On a write, all other caches with a copy are invalidated
2. Update : On a write, all other caches with a copy are updated
•  Invalidation is bad when :

–  single producer and many consumers of data.
•  Update is bad when :

–  multiple writes by one PE before data is read by another PE.
–  Junk data accumulates in large caches (e.g. process migration).

•  Overall, invalidation schemes are more popular as the default.

22

Invalidation, Ownership-based

Dirty

Shared Invalid

Bus Write Miss

Bus invalidate

P-read

Bus-read

P- Read

P-read

P-
w

rit
e

B
us

 W
rit

e
M

is
s

P-write

P-write

P- Read

P-write

23

Illinois Scheme
•  States: I, VE (valid-exclusive), VS (valid-shared), D (dirty)
•  Two features :

–  The cache knows if it has an valid-exclusive (VE) copy. In VE
state no invalidation traffic on write-hits.

–  If some cache has a copy, cache-cache transfer is used.
•  Advantages:

–  closely approximates traffic on a uniprocessor for sequential pgms.
–  In large cluster-based machines, cuts down latency

•  Disadvantages:
–  complexity of mechanism that determines exclusiveness
–  memory needs to wait before sharing status is determined

24

Dirty

Shared Invalid

Bus Write Miss

Bus invalidate
P-read [someone has it]

Bus-read

P- Read

P-read

P-
w

rit
e

B
us

 W
rit

e
M

is
s

P-write

P-write

P- Read [someone has it]

P-write

Valid

Exclusive

P-read
[no one else has it]

Bus-read

P-write
P-read

[no one else has it]

P- Read

25

DEC Firefly Scheme
•  Classification: Write-back, update, no-dirty-sharing.
•  States :

–  VE (valid exclusive): only copy and clean
–  VS (valid shared) : shared -clean copy. Write hits result

in updates to memory and other caches and entry remains
in this state

–  D(dirty): dirty exclusive (only copy)
•  Used special “shared line” on bus to detect sharing status of

cache line
•  Supports producer-consumer model well

•  What about sequential processes migrating between CPU’s?

26

Dirty

Shared
Valid

Exclusive

Bus Read/Write

Bus write-miss

P-Write and not SL

Bus-read/write

P- Write and SL

P-read

P-read

P-
w

rit
e

P-write

Bus Read

[update MM]

P- Read and SL

P-write Miss

and not SL

P-Read

[no one else has it]
Bus Write miss

P-Write M

and SL

P Read

27

Directory Based Cache Coherence

Key idea :keep track in a global directory (in main
memory) which processors are caching a location
and the state.

28

Basic Scheme (Censier and Feautrier)

 Read from main-memory by PE_i
–  If dirty bit is off then {read from main memory;turn p[i] ON; }
–  If dirty bit is ON then {recall line from dirty PE (cache state to

shared); update memory; turn dirty-bit OFF;turn p[i] ON; supply
recalled data to PE_i;}

p p

Interconnection network

cache cache

Directory

Dirty bit K Presence bits

memory

• Assume K processors

• With each cache-block in
memory: K presence bits and 1
dirty bit

• With each cache-block in cache :
1 valid bit and 1 dirty (owner) bit

Read

Miss

29

 If dirty bit ON then {recall the data from owner PE which
invalidates itself; (update memory); clear bit of previous
owner; forward data to PE i; turn bit PE[I] on; (dirty bit
ON all the time) }

 Write- hit to data valid (not owned) in cache: {access
memory-directory; send invalidations to all PE’s caching
block; clear their P[k] bits; supply data to PE i ; turn dirty
bit ON ; turn PE[i] ON }

Write

Miss

Write

Hit

Non -
owned

data

 If dirty-bit OFF then {supply data to PE_i; send

invalidations to all PE’s caching that block and clear their
P[k] bits; turn dirty bit ON; turn P[i] ON; .. }

30

Synchronization
•  Typically → built w/ user level software routines

 → that rely on hardware-based synch primitives
•  Small machines: uninterruptible instruction that atomically

retrieves & changes a value.
 Software synchronization mechanisms are then constructed
on top of it.

•  Large scale machines : powerful hardware - supported
synchronization primitives

Key: ability to atomically read and modify a mem-location

31

→ Users are not expected to use the hardware mechanisms
directly

→ Instead : systems programmers build a synchronization
library : locks,etc .

Examples of Primitives

1) Atomic exchange : interchanges a value in a reg. For a

value in memory
 e.g. lock = 0 free
 1 taken

 processor tries to get a lock by exchanging a 1 in a register
with the lock memory location

32

 •  If value returned = 1 : some other processor had grabbed it
•  If value returned = 0 : you got it

 no one else can since already 1
•  Can there be any races ? (e.g. both get 1)
•  Consider the read - write was 2 instructions

2) Test-and-set : test a value & set it
 e.g. test for a zero and set to 1

3) Fetch-and increment : return the value & increment it

 0 means that the synch var is unclaimed

33

A Second Approach : 2 instructions
•  Having 1 atomic read-write may be complex
•  Have 2 instructions : the 2nd instruction returns a value

from which it can be deduced whether the pair was
executed as if atomic

•  e.g. MIPS “load linked” and “store conditional’
–  If the contents of the location read by the LL change

before the SC to the same address → SC fails
–  If the processor context switches between the two →

SC also fails

34

 –  The SC returns a value indicating whether it failed /
succeeded

–  The LL returns the initial value

Atomic exchange :
 try : mov R3, R4
 ll R2,0(R1)
 sc R3,0(R1)
 beqz R3,try
 mov R4,R2

/* at end : R4 and 0(R1) have been atomically exchanged */

35

 •  If another proc intervenes and modifies the value between
ll, sc → sc returns 0 (and fails)

•  Can also be used for atomic fetch-and -increment

 try : ll R2,0(R1)
 addi R3,R2,#1
 sc R3,0(R1)

 beqz R3,try

36

Implementing Locks
•  Given an atomic operation → use the coherence

mechanisms of an MP to implement spin locks

•  Spin Locks: locks that a processor continuously tries to
acquire , spinning in a loop

 + grabs the lock immediately after it is freed
 - tie up the processor

1) If no cache coherence :

–  Keep the lock in memory
–  to get lock : continuously exchange in a loop

37

 •  To release the lock : write a 0 to it
 daddui R2,R0,#1

lockit : exch R2,0(R1)
 bnez R2,lockit

2) If cache coherence
•  Try to cache the lock → no need to access memory ; can

spin in the cache
•  Since “locality’ in lock accesses : processor that last

acquired it will acquire it next → will reside in the cache
of that processor

38

 •  However : cannot keep spinning w/a write → invalidate
everyone → bus traffic to reload lock

•  Need to do only reads until it sees that the lock is available
→ then an exchange
test and test and set
lockit : ld R2,0(R1)

 bnez R2,lockit
 daddui R2,R0,#1

 exch R2,0(R1)
 bnez R2,lockit

39

See Figure 5.24

40

 •  Can do same thing w/ll-sc
 lockit : ll R2,0(R1)
 bnez R2,lockit
 daddui R2,R0,#1

 sc R2,0(R1)
 beqz R2,lockit ; 0 means SC failed

Problem of spin locks : not scalable → lots of traffic when the

lock is released if many processes waiting

20

Each proc tries to

lock a var

41

 •  One processor release lock → invalidates 1 bus transaction
 everybody

•  All processors read miss 19 bus trans
•  All processors do an exchange many bus trans

 exchanges invalidate other processors

