
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 5 (Cont)

Thread-Level Parallelism

Instructor: Josep Torrellas

CS433

2

Barrier Synchronization

• Barrier forces all processes to wait until all processes reach

the barrier . Then all processes are released

• Implemented w/2 spin locks + counter that counts

 #processes that have arrived

Protects

the counter

Holds the

processes until last one arrives

3

lock(counterlock)

 if(count == 0) release = 0; /* First process : reset release */

 count ++ ; /* how many processes have arrived */

unlock(counterlock)

if(count == total) { /* all have arrived */

 count = 0; release = 1; /* release processes */

}

else { /* more processes to come ; wait */

 spin(release) /* spin until release = 1 */

}

Algorithm

4

Problem : Suppose that before the last process leaves the

barrier , the first process arrives (case barrier is in a loop)

and sets release = 0

 last process never leaves

 Count never reaches total

 barrier spins forever

Solution : Use the sense reversing barrier : each process has a

variable (local_sense) , initialized to 1

Problem

5

local_sense = ! local_sense /* toggle local_sense */

lock(counterlock);

 count++ ;

unlock(counterlock);

if(count == total) {

 count = 0; release = local_sense ;

}

else { /* spin until release is local_sense */

 spin(release = local_sense);

}

/* many bus accesses when processes reach a barrier */

Final

6

Synchronization for Large Scale Machines

1) Software :

 delay processes when they fail to acquire a lock. This
reduces traffic reduces network contention

 best performance : if delay is increased exponentially

 “ exponential backoff “

 li R3,1 ; initial delay

lock it : ll R2,0(R1)

 bnez R2,lockit ;retry

 addi R2,R2,1

 sc R2,0(R1)

 bnez R2,gotit

 sll R3,R3,1 ;increase delay by 2

 pause R3

 j lockit

gotit :

7

 use combining trees for barriers : (reduce contention)

 have a tree w/a fan in of k=3 per node

 when the kth process arrives at a tree signal the next

level in the tree

When a process arrives at the root of the tree , all processes

are released

Struct node { /* a node in the combining tree */

 int counterclock; /*lock for this node */

 int count; /* counter for this node */

 int parent; /* parent in the tree = 0.. P-1 except for root = -1 */

};

struct node tree [0… p-1]; /* the tree of nodes */

int local_sense; /* private per processor */

int release ; /* global release flag */

8

/* function to implement barrier */

barrier(int mynode) {

 lock(tree[mynode].counterclock); /* protect count */

 count ++; /* increment count */

 unlock(tree[mynode].counterclock); /* unlock */

 if(tree[mynode].count == k) { /* all symbols arrive at mynode */

 if(tree[mynode].parent >= 0) {

 barrier(tree[mynode].parent);

 } else {

 release = local_sense;

 }

 tree[mynode].count = 0; /*reset for next time */

 }else {

 spin(release = local_sense); /*wait */

 }

 }

/* code executed by a processor to join barrier */

 local_sense = !local_sense;

barrier(mynode);

9

• Each node combines k processes

 has a separate counter and lock

• when a process reaches the root , it triggers the unfolding

of the recursive calls

Combining Trees for Barriers

10

 fetch-and -increment for barriers:

 each processor sends request, gets a value

 last one releases the lock

 no need for one of the locks

 local_sense = !local_sense;

 fetch&increment (count); /*atomic */

 if(count == total) { /* all arrived */

 count = 0;

 release = local_sense;

 }

 else spin(release=local_sense);

11

Models of Memory Consistency

Problem: a processor updates a variable

 different processors see the update at different times

 can this result in a program behaving unexpectedly?

Possible scenarios

do1 , not do2

do2 , not do1

not do1 , not do2

 .

do2 , do1 ??

 P1 P2

both processors cache A=B = 0

A = 1 B = 1

if(B == 0) { if(A == 0) {

 do1 do2

} }

 if the invalidations get delayed : if it is possible do1 & do2; not what the

programmer expected

12

 The result of any execution should be the same as if the accesses

executed by each processor were kept in order and the accesses among

different processors were interleaved

How to enforce it ? (Sufficient): processor does not issue a memory access

until its previous one is finished

Problem: cannot place a write in a write buffer and continue with a read

 low performance

Model: Sequential Consistency

Sequential consistency

overlapping writes

w1 w2 w3

w1
w2

w3

13

Want: a programming model that is simple to explain and

 allows for high performance

Programming model : assume that programs are synchronized

Synchronized programs : all accesses are ordered by synch

 operations

2 accesses to the same var by two different processes and one

is a write, are always separated by a pair of synch ops

The Programmers View

14

 cases where this is not true : a data race outcome

depends on the

speed of each

processor

 lock lock acquire

 rd x rd x

 wr x wr x

 unlock unlock release

if it was not synchronized , both rds could read the original

value

it is accepted most pgms are synchronized

We will enforce stalls only at synch points

15

• Most programs are synchronized : else behavior of pgm is

 difficult to determine depends on the speed of each process

• Some pgms are unsynchronized : avoid synchronization cost are willing

to accept an inconsistent view of memory e.g. simulated annealing ;

still converges even if a read returns an old value

• Restrictions on the ordering of mem operations : fences

– memory fence (both rd and write)

• Memory fence by proc P :

• In weaker consistency models synchronization accesses

 act as fences

•All accesses by P executed before the fence must be completed

before the fence

•No accesses by P are initiated before fence is finished

16

• Allow higher performance

• Still preserve a simple programming model for synchronized
programs

• Consider pairs of accesses issued by a single processor

 R R

 R W

 W R

 W W

• If pair addresses the same location ordering always
 preserved in all models

• In sequential consistency : all pairs are preserved

Relaxed Models for Memory Consistency

17

* Relaxing the order : the second access can complete

before the first one

e.g.

W R : issue and complete the read before the processor

receives all the invalidation acknowledgements for the

write

release consistency : an example of relaxed consistency

 model

lock(s)

c =

 = d

unlock (s)

Acquire(s)

release(s)

c =
 = d

18

• Accesses within a critical section :

 cannot be issued until acquire is completed

• Release access :

cannot be issued until accesses in critical section are

completed

Note : only need to stall at synchronization points

• before executing any instruction in critical section stall until

the acquire is completed

• before executing a release instruction , stall until all accesses

in critical section are completed

Release Consistency : (sufficient)

