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Chapter 5 (Cont) 

 

Thread-Level Parallelism 

Instructor: Josep Torrellas 
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Barrier Synchronization 

• Barrier forces all processes to wait until all processes reach 

the barrier . Then all processes are released  

• Implemented w/2 spin locks + counter that counts 

                               #processes that have arrived  

 

 

 

 

 

Protects  

the counter 

Holds the  

processes until last one arrives 
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lock(counterlock) 

     if(count == 0) release = 0;  /* First process : reset release */ 

     count ++ ; /* how many processes have arrived */ 

unlock(counterlock) 

if(count == total) { /* all have arrived */   

     count = 0; release = 1; /* release processes */ 

} 

else {  /* more processes to come ; wait */ 

      spin(release)  /* spin until release = 1  */ 

} 

 

Algorithm 
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Problem : Suppose that before the last process leaves the 

barrier , the first process arrives ( case barrier is in a loop ) 

and sets release = 0 

     last process never leaves 

     Count never reaches total 

      barrier spins forever 

 

Solution : Use the sense reversing barrier : each process has a 

variable ( local_sense) , initialized to 1  

Problem 
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local_sense = ! local_sense   /* toggle local_sense */ 

lock(counterlock); 

 count++ ; 

unlock(counterlock); 

if(count == total) { 

 count = 0; release = local_sense ; 

} 

else {  /* spin until release is local_sense */ 

 spin(release = local_sense); 

} 

/* many bus accesses when processes reach a barrier   */ 

Final 
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Synchronization for Large Scale Machines 

1) Software :   

  delay processes when they fail to acquire a lock. This 
reduces traffic  reduces network contention 

 best performance : if delay is increased exponentially 

    “ exponential backoff “ 

  li R3,1     ; initial delay 

lock it :  ll R2,0(R1) 

  bnez R2,lockit  ;retry 

  addi R2,R2,1 

  sc R2,0(R1) 

  bnez R2,gotit 

  sll R3,R3,1  ;increase delay by 2   

  pause R3 

  j lockit 

gotit :        
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   use combining trees for barriers : (reduce contention) 

 have a tree w/a fan in of k=3 per node  

 when the kth process arrives at a tree signal the next 

level in the tree 

When a process arrives at the root of the tree , all processes 

are released  

 
Struct node { /* a node in the combining tree */ 

  int counterclock; /*lock for this node */ 

  int count; /* counter for this node */ 

  int parent; /* parent in the tree = 0.. P-1 except for root = -1 */ 

}; 

struct node tree [0… p-1]; /* the tree of nodes */ 

int local_sense; /* private per processor */ 

int release ; /* global release flag */ 
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/* function to implement barrier */ 

barrier(int mynode) { 

 lock(tree[mynode].counterclock); /* protect count */ 

 count ++;  /* increment count */ 

 unlock(tree[mynode].counterclock); /* unlock  */ 

 if(tree[mynode].count == k) { /* all symbols arrive at mynode */ 

  if(tree[mynode].parent  >= 0) {  

   barrier(tree[mynode].parent); 

           } else { 

    release = local_sense; 

  }  

  tree[mynode].count = 0; /*reset for next time */  

       }else { 

  spin(release = local_sense);  /*wait */ 

  } 

 } 

        

/* code executed by a processor to join barrier */ 

 local_sense = !local_sense; 

barrier(mynode); 
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• Each node combines k processes 

          has a separate counter and lock 

 

• when a process reaches the root , it triggers the unfolding 

of the recursive calls 

Combining Trees for Barriers  
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 fetch-and -increment for barriers: 

  each processor sends request, gets a value  

  last one releases the lock 

  no need for one of the locks 

 

 local_sense = !local_sense; 

 fetch&increment (count);  /*atomic */ 

 if(count == total) {   /* all arrived */ 

  count = 0; 

  release = local_sense; 

 } 

 else spin(release=local_sense); 
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Models of Memory Consistency 

Problem: a processor updates a variable 

     different processors see the update at different times 

     can this result in a program behaving unexpectedly?  

Possible scenarios 

do1 , not do2 

do2 , not do1 

not do1 , not do2 

            . 

do2  ,  do1  ??   

     P1                       P2 

both processors cache A=B = 0 

A = 1      B = 1 

if(B == 0) {            if( A ==  0) { 

   do1                          do2 

}                              } 

 if the invalidations get delayed : if it is possible do1 & do2; not what the 

programmer expected 
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 The result of any execution should be the same as if the accesses 

executed by each processor were kept in order and the accesses among 

different processors were interleaved  

 

How to enforce it ? (Sufficient): processor does not issue a memory access 

until its previous one is finished 

 

Problem: cannot place a write in a write buffer and continue with a read 

 low performance  

Model: Sequential Consistency 

Sequential consistency 

overlapping writes  

w1 w2 w3 

w1 
w2 

w3 
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Want: a programming model that is simple to explain and  

    allows for high performance 

Programming model : assume that programs are synchronized 

Synchronized programs : all accesses are ordered by synch  

           operations 

2 accesses to the same var by two different processes and one 

is a write, are always separated by a pair of synch ops  

The Programmers View 
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 cases where this is not true : a data race  outcome 

depends       on the 

speed of        each 

processor 

 

  lock  lock  acquire 

  rd x  rd x  

  wr x  wr x     

 unlock  unlock    release 

if it was not synchronized , both rds could read the original 

value 

it is accepted  most pgms are synchronized 

We will enforce stalls only at synch points  
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• Most programs are synchronized : else behavior of pgm is  

 difficult to determine  depends on the speed of each process 

• Some pgms are unsynchronized : avoid synchronization cost are willing 

to accept an inconsistent view of memory e.g. simulated annealing ; 

still converges even if a read returns an old value 

• Restrictions on the ordering of mem operations : fences 

– memory fence (both rd and write) 

• Memory fence by proc P :  

 

 

 

• In weaker consistency models  synchronization accesses   

         act as fences 

 

•All accesses by P executed before the fence must be completed 

before the fence  

•No accesses by P are initiated before fence is finished 
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• Allow higher performance 

• Still preserve a simple programming model for synchronized 
programs 

• Consider pairs of accesses issued by a single processor 

 R  R 

 R  W 

 W  R 

 W  W 

• If pair addresses the same location  ordering always  
     preserved in all models 

• In sequential consistency : all pairs are preserved 

  

  

Relaxed Models for  Memory Consistency  
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* Relaxing the order : the second access can complete 

before the first one  

e.g. 

W R : issue and complete the read before the processor  

receives all the invalidation acknowledgements for the 

write 

release consistency : an example of relaxed consistency  

   model  

 

lock(s) 

c =  

  = d 

unlock (s) 

Acquire(s) 

release(s) 

c = 
 = d 
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• Accesses within a critical section : 

 cannot be issued until acquire is completed 

• Release access : 

cannot be issued until accesses in critical section are 

completed 

 

Note :  only need to stall at synchronization points 

• before executing any instruction in critical section stall until 

the acquire is completed 

• before executing a release instruction , stall until all accesses 

in critical section are completed   

Release Consistency : (sufficient ) 


