
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 3 (Cont IV):
Further Techniques for

Exploiting ILP

2

Software Pipelining

•  Code reorganization technique to uncover parallelism
•  Idea: each iteration contains instructions from several

different iterations in the original loop
•  The reason: separate the dependent instructions that

occur within a single loop iteration
•  We need some start-up code before the loop begins

and some code to finish up after the loop is completed

3

Software Pipelining

4

Software Pipelining
Loop: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

It i: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

It I+1: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

It I+2: LD F0,0(R1)

 ADDD F4,F0,F2

 SD F4,0(R1)

Loop: SD F4,16(R1) ;stores into M[i]

 ADDD F4,F0,F2 ; adds to M[i-1]

 LD F0,0(R1) ; loads M[i-2]

 DADDUI R1,R1,#-8

 BNE R1,R2,Loop

5

Software Pipelining

•  Every 5 cycles, we get a result (ignoring the startup
and cleanup portions)

•  Notice that there are no true dependences
•  Because the load and store are separated by two

iterations:
–  The loop should run for two fewer iterations
–  The startup code is: LD of iterations 1 and 2, ADDD of

iteration 1
–  The cleanup code is: ADDD for last iteration and SD for

the last two iterations

6

Software Pipelining

•  Register management can be tricky
•  Example shown is not hard: registers that are written in

one iteration are read in the next one
•  If we have long latencies of the dependences:

–  May need to increase the number of iterations between when
we write a reg and use it

–  May have to manage the reg use
–  May have to combine software pipelining and loop unrolling

7

Software Pipelining vs Loop Unrolling

•  Sotftware pipelining consumes less code space
•  Both yield a better scheduled inner loop
•  Each reduces a different type of overhead:

–  LU: branch and counter update code
–  SP: reduces the time when the loop is not running at peak

speed (only once at the beginning and once at the end)

8

Software Pipelining vs Loop Unrolling

•  Non-rectangular area: times when the loop is not running at

maximum overlap or parallelism between instr

9

Conditional or Predicated Instructions
•  When branch behavior is not well known, compiler

techniques may not be of much use
•  In this case, use hardware techniques:

–  Add Conditional or Predicated instructions: used to
eliminate branches and to assist the compiler to move
instructions up past branches

–  Support Dynamic Speculation: Done by the HW using
branch prediction: allow the execution of an instruction
before the processor knows that the instruction should
execute

10

Conditional or Predicated Instructions
•  An instruction refers to a condition, which is evaluated as part

of the instruction execution
•  If condition is true: instruction is executed normally; if false:

the instruction is a NO-OP
•  E.g. conditional move: move a value from a reg to another one

if a condition is true

If (A==0) {S=T;}

 BNEZ R1, L
 ADDU R2,R3,R0
L:

CMOVZ R2,R3, R1
;performs the move only if
; third op is 0

11

Conditional or Predicated Instructions
•  Allow us to convert control dep to data dep
•  In a pipeline: moves the resolution from near the front of the

pipeline to the end where the register write occurs!
•  Another example: Conditional load, which loads only if the third

operand is not zero

•  If this instruction used speculatively, we must ensure that it does
not cause an exception

•  Therefore, these conditional instructions, if condition not true:
 - No effect (not update any reg)
 - No exception

LWC R8, 20(R12), R10

12

Conditional or Predicated Instructions

•  If R10 contains 0, it better not cause an exception
•  Problems with conditional instructions:

–  Those that are annulled, still take time
–  Conditional instructions are most useful when the

condition can be evaluated early
–  Sometimes it would be useful to have several conditions
–  Conditional instr may have some speed penalty relative to

non conditional

…. wasted …
BEQZ R10, L
LW R8, 20 (R10)

LWC R8, 20 (R10) , R10
BEQZ R10, L

