Chapter 3 (Cont III):
Exploiting ILP with Software
Approaches

Copyright Josep Torrellas 1999, 2001, 2002, 2013



Exposing ILP (3.2)

Want to find sequences of unrelated instructions that can be
overlapped in the pipeline.

Separate dependent instructions by a distance in clock cycles
equal to the latency of the source instruction.

Assumptions: basic 5-stage pipeline, 1-cycle delay branches,
and fully pipelined FUs or replicated

Note: In Figure 3.2, latency means “number of intervening
instructions”



Loop Unrolling

« Example page 158-160
e Unrolling:
— replicate the loop body several times, adjusting the loop termination code
— use different regs in every iteration, thus increasing register pressure
* In real life, we do not know the number of iterations:
— assume n iterations, k bodies per iteration
— separate into two loops:

e One executes (n mod k) times and has the original body
 Other executes (n/k) times and has k bodies



Loop Unrolling Summary

e Advantages:
— more ILP
— fewer overheard instructions
* Disadvantages:
— code size increases
— register pressure increases
— problem becomes worse in multiple 1ssue processors

« Example: went from 9 cycles/elem to 3.5 cycles

Copyright Josep Torrellas 1999, 2001, 2002



VLIW Approach

Superscalar hardware 1s tough

E.g. for the two 1ssue superscalar: every cycle we examine the
opcode of 2 1instr, the 6 registers specifiers and we
dynamically determine whether one or two instructions can
issue and dispatch them to the appropriate FUs

VLIW:

— packages multiple independent ops into one very long instruction
— Burden of finding indep instructions is on the compiler
— No deps within i1ssue package or at least indicate when a dep 1s present

— Hardware simpler
Example VLIW instruction: 2 int, 2 fp, 2 mem, 1 branch

An instruction has a set of fields for each FU = 112-168 bits
per 1nstruction



VLIW Approach

« Early VLIW:

— rigid in their instruction formats

— require recompilation of programs for different versions of the HW

e Newer VLIWSs:

— still require compiler to do most of the work to find/schedule instruc

— however, add innovations to increase flexibility



VLIW Approach (3.7)

* To keep all FU busy = need enough parallelism in code

 How to uncover parallelism?
— Unrolling loops =2 ¢liminates branches
— Scheduling code within basic block = local scheduling
— Scheduling code across basic blocks = global scheduling

* One global scheduling technique: Trace Scheduling



Example: 2 mem + 2 fp + 1 int or branch per instr
ignore the branch delay slot

unroll the typical loop to eliminate all stalls (i1ssue
1 VLIW 1nstruction per cycle)

Figure 3.16: seven copies of the body take 9 cycles, or

1.29 cycles/result, which 1s about twice as fast as superscalar.

Note: Efficiency 1s 60% (slots with operation)
Requires a LARGE number of registers!



Problems 1n the Original VLIW Model

» Increase in code size
— Generating enough parallelism requires wide loop unrolling
— Many instructions are not full
— If no operation can be scheduled, whole 1nstruction empty

« Limitations of lockstep operation

— Any stall in any FU pipeline must cause entire processor to
stall (all FUs kept synchronized)

— Easy for deterministic FUs, but not for cache misses
— Cache misses caused all FU to stall!



Problems 1n the Original VLIW Model

* Binary code compatibility
— Code generation needs to know the detailed pipeline
structure, including FUs and latencies

— Migrating between successive implementations or between
implementations with different 1ssue width requires
recompilation (unlike dynamic superscalars)

* Finding enough parallelism (problem for all multiple 1ssue
Processors)

* EPIC (IA-64) solves some of these problems

10



Combating Code Size Increase

* Use clever encoding
— Have one large immediate field used by any FU

— Compress the instructions in main memory and expand them
when read 1nto the cache or decoded

11



Lock Step Operation

» Lock step operation is not acceptable. Recent VLIW processors:
— FU operate more independently

— Hardware checks for hazards and allows unsynchronized
execution

12



Solving Migration Problem

» Use object code translation or emulation

Finding Enough Parallelism

e Ifneed loop unrolling in FP programs: Vector processors can do
just as well

 However, advantages of multiple issue procs over vector procs:
— Ability to extract some parallelism from less structured codes
— Ability to use a conventional, cheap cache-based mem system

« Consequently: use multiple issue procs and add a vector extension
to them

13



