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Exposing ILP (3.2)

Want to find sequences of unrelated instructions that can be
overlapped in the pipeline.

Separate dependent instructions by a distance in clock cycles
equal to the latency of the source instruction.

Assumptions: basic 5-stage pipeline, 1-cycle delay branches,
and fully pipelined FUs or replicated

Note: In Figure 3.2, latency means “number of intervening
instructions”



Loop Unrolling

« Example page 158-160
e Unrolling:
— replicate the loop body several times, adjusting the loop termination code
— use different regs in every iteration, thus increasing register pressure
* In real life, we do not know the number of iterations:
— assume n iterations, k bodies per iteration
— separate into two loops:

e One executes (n mod k) times and has the original body
 Other executes (n/k) times and has k bodies



Loop Unrolling Summary

e Advantages:
— more ILP
— fewer overheard instructions
* Disadvantages:
— code size increases
— register pressure increases
— problem becomes worse in multiple 1ssue processors

« Example: went from 9 cycles/elem to 3.5 cycles
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VLIW Approach

Superscalar hardware 1s tough

E.g. for the two 1ssue superscalar: every cycle we examine the
opcode of 2 1instr, the 6 registers specifiers and we
dynamically determine whether one or two instructions can
issue and dispatch them to the appropriate FUs

VLIW:

— packages multiple independent ops into one very long instruction
— Burden of finding indep instructions is on the compiler
— No deps within i1ssue package or at least indicate when a dep 1s present

— Hardware simpler
Example VLIW instruction: 2 int, 2 fp, 2 mem, 1 branch

An instruction has a set of fields for each FU = 112-168 bits
per 1nstruction



VLIW Approach

« Early VLIW:

— rigid in their instruction formats

— require recompilation of programs for different versions of the HW

e Newer VLIWSs:

— still require compiler to do most of the work to find/schedule instruc

— however, add innovations to increase flexibility



VLIW Approach (3.7)

* To keep all FU busy = need enough parallelism in code

 How to uncover parallelism?
— Unrolling loops =2 ¢liminates branches
— Scheduling code within basic block = local scheduling
— Scheduling code across basic blocks = global scheduling

* One global scheduling technique: Trace Scheduling



Example: 2 mem + 2 fp + 1 int or branch per instr
ignore the branch delay slot

unroll the typical loop to eliminate all stalls (i1ssue
1 VLIW 1nstruction per cycle)

Figure 3.16: seven copies of the body take 9 cycles, or

1.29 cycles/result, which 1s about twice as fast as superscalar.

Note: Efficiency 1s 60% (slots with operation)
Requires a LARGE number of registers!



Problems 1n the Original VLIW Model

» Increase in code size
— Generating enough parallelism requires wide loop unrolling
— Many instructions are not full
— If no operation can be scheduled, whole 1nstruction empty

« Limitations of lockstep operation

— Any stall in any FU pipeline must cause entire processor to
stall (all FUs kept synchronized)

— Easy for deterministic FUs, but not for cache misses
— Cache misses caused all FU to stall!



Problems 1n the Original VLIW Model

* Binary code compatibility
— Code generation needs to know the detailed pipeline
structure, including FUs and latencies

— Migrating between successive implementations or between
implementations with different 1ssue width requires
recompilation (unlike dynamic superscalars)

* Finding enough parallelism (problem for all multiple 1ssue
Processors)

* EPIC (IA-64) solves some of these problems
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Combating Code Size Increase

* Use clever encoding
— Have one large immediate field used by any FU

— Compress the instructions in main memory and expand them
when read 1nto the cache or decoded
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Lock Step Operation

» Lock step operation is not acceptable. Recent VLIW processors:
— FU operate more independently

— Hardware checks for hazards and allows unsynchronized
execution
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Solving Migration Problem

» Use object code translation or emulation

Finding Enough Parallelism

e Ifneed loop unrolling in FP programs: Vector processors can do
just as well

 However, advantages of multiple issue procs over vector procs:
— Ability to extract some parallelism from less structured codes
— Ability to use a conventional, cheap cache-based mem system

« Consequently: use multiple issue procs and add a vector extension
to them
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