
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 3 (Cont III):
Exploiting ILP with Software

Approaches

2

Exposing ILP (3.2)
•  Want to find sequences of unrelated instructions that can be

overlapped in the pipeline.
•  Separate dependent instructions by a distance in clock cycles

equal to the latency of the source instruction.

•  Assumptions: basic 5-stage pipeline, 1-cycle delay branches,
and fully pipelined FUs or replicated

•  Note: In Figure 3.2, latency means “number of intervening
instructions”

3

Loop Unrolling
•  Example page 158-160
•  Unrolling:

–  replicate the loop body several times, adjusting the loop termination code
–  use different regs in every iteration, thus increasing register pressure

•  In real life, we do not know the number of iterations:
–  assume n iterations, k bodies per iteration
–  separate into two loops:

•  One executes (n mod k) times and has the original body
•  Other executes (n/k) times and has k bodies

Copyright Josep Torrellas 1999, 2001, 2002 4

Loop Unrolling Summary
•  Advantages:

–  more ILP
–  fewer overheard instructions

•  Disadvantages:
–  code size increases
–  register pressure increases
–  problem becomes worse in multiple issue processors

•  Example: went from 9 cycles/elem to 3.5 cycles

5

VLIW Approach
•  Superscalar hardware is tough
•  E.g. for the two issue superscalar: every cycle we examine the

opcode of 2 instr, the 6 registers specifiers and we
dynamically determine whether one or two instructions can
issue and dispatch them to the appropriate FUs

•  VLIW:
–  packages multiple independent ops into one very long instruction
–  Burden of finding indep instructions is on the compiler
–  No deps within issue package or at least indicate when a dep is present
–  Hardware simpler

•  Example VLIW instruction: 2 int, 2 fp, 2 mem, 1 branch
•  An instruction has a set of fields for each FU à 112-168 bits

per instruction

6

VLIW Approach
•  Early VLIW:

–  rigid in their instruction formats
–  require recompilation of programs for different versions of the HW

•  Newer VLIWs:
–  still require compiler to do most of the work to find/schedule instruc
–  however, add innovations to increase flexibility

7

VLIW Approach (3.7)
•  To keep all FU busy à need enough parallelism in code
•  How to uncover parallelism?

–  Unrolling loops àeliminates branches
–  Scheduling code within basic block à local scheduling
–  Scheduling code across basic blocks à global scheduling

•  One global scheduling technique: Trace Scheduling

8

 Example: 2 mem + 2 fp + 1 int or branch per instr
 ignore the branch delay slot
 unroll the typical loop to eliminate all stalls (issue

 1 VLIW instruction per cycle)

Figure 3.16: seven copies of the body take 9 cycles, or
1.29 cycles/result, which is about twice as fast as superscalar.

Note: Efficiency is 60% (slots with operation)

 Requires a LARGE number of registers!

9

Problems in the Original VLIW Model
•  Increase in code size

–  Generating enough parallelism requires wide loop unrolling
–  Many instructions are not full
–  If no operation can be scheduled, whole instruction empty

•  Limitations of lockstep operation
–  Any stall in any FU pipeline must cause entire processor to

stall (all FUs kept synchronized)
–  Easy for deterministic FUs, but not for cache misses
–  Cache misses caused all FU to stall!

10

Problems in the Original VLIW Model
•  Binary code compatibility

–  Code generation needs to know the detailed pipeline
structure, including FUs and latencies

–  Migrating between successive implementations or between
implementations with different issue width requires
recompilation (unlike dynamic superscalars)

•  Finding enough parallelism (problem for all multiple issue
processors)

•  EPIC (IA-64) solves some of these problems

11

Combating Code Size Increase
•  Use clever encoding

–  Have one large immediate field used by any FU
–  Compress the instructions in main memory and expand them

when read into the cache or decoded

12

Lock Step Operation
•  Lock step operation is not acceptable. Recent VLIW processors:

–  FU operate more independently
–  Hardware checks for hazards and allows unsynchronized

execution

13

Solving Migration Problem
•  Use object code translation or emulation

Finding Enough Parallelism
•  If need loop unrolling in FP programs: Vector processors can do

just as well
•  However, advantages of multiple issue procs over vector procs:

–  Ability to extract some parallelism from less structured codes
–  Ability to use a conventional, cheap cache-based mem system

•  Consequently: use multiple issue procs and add a vector extension
to them

