
Copyright J. Torrellas 1999,2001,2002,2007, 2013 1

Chapter 3 (CONT II)

Instructor: Josep Torrellas
CS433

Copyright J. Torrellas 1999,2001,2002,2007 2

Hardware-Based Speculation (Section 3.6)

•  In multiple issue processors, stalls due to branches would be frequent:
–  You may need to execute 1 branch/cycle
–  Cannot start execution until branch is resolved

•  Solution: Speculate the outcome of the branch and execute as if the guess
was correct.
–  Note the extension over previous branch prediction: we now allow EX
–  This is called hardware speculation
–  Requires the ability to recover from mispredictions

•  Hardware-based speculation combines:
–  Dynamic branch prediction
–  Speculation to allow EX
–  Aggressive dynamic scheduling across basic blocks (because now we

aggressively execute past basic blocks)

Copyright J. Torrellas 1999,2001,2002,2007 3

Speculative Execution Based on Tomasulo
•  Used in most processors: IBM, Intel, AMD…
•  Key: separate the bypassing of results among instructions from

full instruction completion
–  Allow a speculative instruction to pass its result to others
–  Not complete the instruction (not allow it to update any undoable state)

•  When the instruction is no longer speculative: allow it to
modify the reg file or memory à Instruction Commit Step

•  Overall:
–  instructions execute ooo, but they commit in order
–  Prevent any irrevocable action until an instruction commits

Copyright J. Torrellas 1999,2001,2002,2007 4

Reorder Buffer (ROB)
•  Buffer that holds the result of instructions that have completed

but not committed
•  Hardware buffer
•  Also used to pass results among instructions
•  Provides additional registers like the Reservation Stations in

Tomasulo à extend the register set
•  Difference ROB-Tomasulo Res Stations:

–  Tom: Once the FU writes its result, subsequent instructions find the
value in the register set

–  ROB: ROB supplies the results of completed instructions not yet
committed

Copyright J. Torrellas 1999,2001,2002,2007 5

ROB
•  Fields in an entry:

–  Instruction type: BR (no dest), SD (dest is mem), Other (dest is reg)
–  Destination field: destination register or destination mem address
–  Value: value until commit
–  Ready: has the instruction finished (and therefore the result is ready)

•  We place the ROB instead of the Store Buffs

Copyright J. Torrellas 1999,2001,2002,2007 6

Figure 3.11

Copyright J. Torrellas 1999,2001,2002,2007 7

Functions
•  Res Stations:

–  Place to buffer operations and operands from the time I issues until it can
execute

–  RS track the ROB assigned for an instruction

•  ROB:
–  Does the renaming
–  Every instruction has a position in the ROB from when it issues until it

commits
–  We tag a result using the ROB entry number rather than the RS number

Copyright J. Torrellas 1999,2001,2002,2007 8

Overall Instruction Execution
•  ISSUE or DISPATCH:

–  Get an instruction from instruction queue
–  Issue it if there is an empty RS and an empty ROB entry
–  Send ops to the RS if they are available in any reg or ROB entry
–  Send the number of the ROB entry to the RS, so that it can be used to

tag the result of the execution when it is dumped in the CDB
–  If no RS or no ROB entry: stall instruction and successors

•  EXECUTE:
–  Monitor for any of your inputs to be available in the CDB (this enforces

RAW). If so, read it in the RS
–  When both ops ready and the FU free, execute /*note: some sources call

this step “issue”. We will not use this word here */
–  May take several cycles
–  Loads require 2 steps (address generation and memory access); stores

need only 1 step (address generation)

Copyright J. Torrellas 1999,2001,2002,2007 9

Overall Instruction Execution
•  WRITE RESULT:

–  When EX complete, dump result on the bus, together with the ROB
entry number. Mark RS as available.

–  The data is sent to other RS waiting for it, and to the correct ROB entry
–  We assume that for Stores, it is at this time that the data is generated. So

the value to be stored is also moved to the ROB entry.

•  COMMIT or GRADUATION:
–  When an instruction reaches the head of the ROB and its result is present

in the entry àupdate the Reg file and remove the ROB entry.
–  If the instruction is a Store: Do same except that memory is updated
–  If the instruction is a branch with incorrect prediction: flush the ROB

and restart execution at the correct successor
–  If the instruction is a branch with correct prediction: as usual

Copyright J. Torrellas 1999,2001,2002,2007 10

Example
•  Example page 187 and Figure 3.12 (when MUL.D in W stage)

L.D F6,32(R2)
L.D F2,44(R3)
MUL.D F0,F2,F4
SUB.D F8,F2,F6
DIV.D F10,F0,F6
ADD.D F6,F8,F2
•  No need to worry about timing
•  Compare to non-speculative Tomasulo (fig 3.7): there,

instructions complete ooo; here, they have to commit in order

Copyright J. Torrellas 1999,2001,2002,2007 11

Continuation of the Example
Major difference: with the ROB, dynamic execution can maintain

a precise exception model. Example:
•  If MULT suffers exception
•  Wait until it reaches the head of the ROB
•  service exception
•  flush all pending instructions

Copyright J. Torrellas 1999,2001,2002,2007 12

Example of Branch Misprediction
•  Example page 189 and Figure 3.13
•  No need to worry about timing
•  After a branch is mispredicted, recover by

–  clear the ROB for all instructions that follow the branch
–  Let branch and the previous instructions to commit
–  fetch at the correct branch successor

•  Exceptions
–  Record the exception in the ROB entry
–  If the excepting instruction is in the mispredicted path, simply squash the

instruction and flush the exception.
–  When the excepting instruction reaches the head ROB: process it

Copyright J. Torrellas 1999,2001,2002,2007 13

Handling Stores
•  Tomasulo’s algorithm: stores update caches/memory as soon as

they complete the WB
•  Speculative processor: stores only update caches/memory when

they reach the head of the ROB
–  Therefore: memory not updated by a speculative instruction

•  Note: Stores in speculative processor can go through the
WRITE RESULTS stage even if the value to be stored is not
ready; the value is only needed to COMMIT.
–  When the value is ready, it is stored in the ROB.

Copyright J. Torrellas 1999,2001,2002,2007 14

Dependences Through Memory
•  WAW: Eliminated because the updating of memory occurs in

order, when the WR is at the head of ROB
–  Therefore, no earlier LD or ST can be pending

•  WAR: same as WAW
•  RAW: Maintained with two restrictions:

–  LD cannot be sent to memory if there is a previous ST in the ROB with
the same address

–  LD computes its effective address in order relative to all earlier ST
–  Note: some speculative machines actually allow the bypass of a value

from a previous ST to a successor LD without the LD having to go to
memory

Copyright J. Torrellas 1999,2001,2002,2007 15

Multiple Issue Processors
•  If all techniques described are successful → CPI = 1
•  To reduce CPI below 1 ⇒ issue multiple inst per cycle

–  superscalar processors (a)
–  VLIW or EPIC processors (b)

(a) : issue varying # of inst/clock
 may be statically scheduled (in-order execution)
 dynamically scheduled based on Tomasulo (ooo

 execution)
(b): issue fixed #instr/clock (usually as a large instr)
 statically scheduled
See Fig 3.15

Copyright J. Torrellas 1999,2001,2002,2007 16

Superscalars
•  For example, in a cycle, issue 0-8 instructions

–  usually instructions are indep
–  have to satisfy some constraints e.g no more 1 mem ref
–  if an instruction does not meet this issue criteria, do not

issue it; do not issue following instr.
•  VLIW : Compiler has responsibility of creating the package

of instructions to simultaneously issue.
 If it cannot find enough, put NOOPS

 eg. Superscalar : issue an integer + ftpt instruction per cycle

Copyright J. Torrellas 1999,2001,2002,2007 17

Multiple Issue with Dynamic Scheduling
and Speculation

•  We use Tomasulo
•  For example: issue 2 instructions per cycle. These instructions

may even have dependences with each other
•  In general, for n-issue width: done with a combination of two

approaches:
–  Run the issue step at higher speed, so that e.g. two

instructions can be issued in 1 cycle
–  Build wider logic, so that multiple instructions can be issued

at the same time and all dependences are checked.

Copyright J. Torrellas 1999,2001,2002,2007 18

Example 2-issue
Loop LD R2,0(R1)
 DADDIU R2,R2,#1
 SD R2,0(R1)
 DADDIU R1,R1,#4
 BNE R2,R3,Loop

•  Assume separate FUs for: effective address calc, ALU ops,
branch condition eval

•  Assume 2 inst of any type can commit/cycle

Copyright J. Torrellas 1999,2001,2002,2007 19

Example 2-issue
•  Figure 3.19: no speculation

–  note: here we assume that LD/ST cannot complete effective
address calculation until previous branch resolved. Could
save 1 cycle by allowing address calculation but not mem
access

•  Figure 3.20: speculation (up to 2 inst can commit/cycle)
–  since branch is key performance limitation, speculation

helps!

Copyright J. Torrellas 1999,2001,2002,2007 20

Considerations for Spec Machines
1. ROB vs Register Renaming:
•  Using ROB

–  architectural registers contained in combination of register set,
reservation stations, and ROB

–  if we do not issue instr for a while: as instructions commit, reg values
will appear in the register file

•  Explicit set of physical regs + register renaming:
–  Some ROB entries did not need destination register
–  Physical regs hold both the architecturally visible regs and temp values
–  Extended regs play role of both res stations + ROB
–  WAW and WAR hazards eliminated by renaming the destination register

Copyright J. Torrellas 1999,2001,2002,2007 21

Considerations for Spec Machines
2. How much to speculate:
•  Adv of speculation: execute past branches
•  Dsv: may execute a lot of useless instructions
•  Consequently: execute under speculative mode only low-cost

events:
–  yes: misses in L1
–  no: TLB misses. In this case, wait until the instruction causing the event

becomes non-speculative

Copyright J. Torrellas 1999,2001,2002,2007 22

Considerations for Spec Machines
3. Speculating through multiple branches:
•  Some programs have a high frequency of branches or branch

clustering --> speculate across multiple branches
•  Complicates the process of speculation recovery
•  It is hard to speculate on more than one branch per cycle

