
Copyright J. Torrellas 1999,2001,2002,2007,2013 1

Chapter 3 (CONT)

Instructor: Josep Torrellas
CS433

2

Dynamic Hardware Branch Prediction
•  Control hazards are sources of losses , especially for

processors that want to issue > 1 instr / cycle
•  Proposed approach : use HW to dynamically predict the

outcome of a branch (may change with time)

1 Branch prediction buffer (a.k.a. branch history table)
–  Small memory indexed by lower bits of addr of branch

instruction
–  Contains 1 bit that says if branch was recently taken

3

 Note : the prediction may refer to another branch that has
some low-order address bits

•  If hint is wrong : prediction bit is inverted
•  Problem : if branch is taken 9 times in a row in a loop we

have two mispredictions

2 Two-bit prediction schemes
•  Need to mispredict twice before changing the predict

See Figure C.18

4

Figure C.18

5

 3. N-bit saturating counter
•  n bit counter can take from 0 to 2 - 1
•  if count ≥ 2 branch predict taken

 else predict untaken
•  if taken, increment ; if untaken , decrement

Accuracy : 4096 entries in table, 2 bits
 → misprediction rate ≈1 - 18% in spec89
 → usually better at FP programs (more loops)

n

n-1

6

 4 Look at recent behavior of other branches too
 “correlating predictors or two-level predictors”
 if (d == 0)
 d =1 ;

 if (d == 1)
 e.g scheme where each branch has 2 separate bits

 prediction used prediction used if
 if the last branch the last branch taken
 not taken

example → works very well for b2

7

 → correct prediction for b1 is by chance
 b2 will always work (every execution) except if d=1

 This is called a (1 , 1) predictor
 last choose among
 branch 2 states (1 bit)

 Can be (m , n)
 look at use n bits

 last m to predict
 branches }

Easy hardware to
remember outcome of

last m branches

8

 •  A two bit predictor with no global history is a (0,2)
predictor

 # bits in an (m,n) predictor ?

 2 * n * #entries
 e.g (2,2)

m

9

Tournament Predictors
•  Use multiple predictors, usually

–  One based on global info
–  One based on local info
–  Combining them with a selector

•  They do very well
•  They are a popular form of Multilevel branch predictors (use

several levels of branch prediction tables together with an
algorithm for choosing among them)

•  Existing ones: use a 2-bit saturating counter per branch to
choose among two different predictors (the four states of the
counter dictate whether to use predictor 1 or 2)

10

Tournament Predictors
•  The counter is incremented whenever the predicted predictor is

correct and the other is incorrect, and is decremented in the
reverse situation

•  Advantage: ability to select the right predictor for right branch
•  Figure 3.3: fraction of predictions that use the local predictor
•  Figure 3.4: comparing local/global/tournament

Copyright © 2011, Elsevier Inc. All rights
Reserved.

Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is first, followed by a noncorrelating 2-bit
predictor with unlimited entries and a 2-bit predictor with 2 bits of global history and a total of 1024 entries. Although these data

are for an older version of SPEC, data for more recent SPEC benchmarks would show similar differences in accuracy.

Copyright © 2011, Elsevier Inc. All rights
Reserved.

Figure 3.4 The misprediction rate for three different predictors on SPEC89 as the total number of bits is increased. The predictors
are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of global and local information at each

point in the graph, and a tournament predictor. Although these data are for an older version of SPEC, data for more recent SPEC
benchmarks would show similar behavior, perhaps converging to the asymptotic limit at slightly larger predictor sizes.

13

Branch Target Buffers (BTB)
•  In addition to predicting the branch,we need to guess the

target address
•  If the target address can be determined by end of IF

 → zero branch penalty
•  BTB : Small cache that stores the predicted address for the

next instruction after a branch
Note:
•  If we use a branch prediction table → accessed during ID

 → branches have 1 cycle penalty
•  If we use a BTB → accessed during IF

 → branches have 0 cycle penalty

14

How a BTB Works

•  During the IF, we use the addr to access the BTB
•  If hit, we extract the address of the next inst. to fetch
•  Note : unlike the branch prediction buffer , the entry must

be for this instruction, else would fetch something wrong
•  Note : Only need to store predicted - taken branches
•  Easiest scheme : Store in the BTB only PC-relative

conditional branches → target address is a constant

15

•  No branch delay if entry found in BTB and it is correct
•  There is some cost in updating the BTB in case of

misprediction or wrong target
•  We do not try to update BTB while fetching instr

 → could not access it
 → best to stall 1 or 2 cycles

•  Can be combined with a branch prediction table to decide
when to put entries in BTB

See Figure 3.21 and Figure 3.22

Copyright © 2011, Elsevier Inc. All rights
Reserved.

Figure 3.21 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruction addresses stored
in the first column; these represent the addresses of known branches. If the PC matches one of these entries, then the instruction

being fetched is a taken branch, and the second field, predicted PC, contains the prediction for the next PC after the branch.
Fetching begins immediately at that address. The third field, which is optional, may be used for extra prediction state bits.

Copyright © 2011, Elsevier Inc. All rights
Reserved.

Figure 3.22 The steps involved in handling an instruction with a branch-target buffer.

18

•  If branch not correctly predicted (not taken or taken to

wrong target) : 1 cycle update BTB
 1 cycle to restart fetching

•  If branch not found & taken: 2 cycles update BTB

See figure 3.23

19

Example : Find branch penalty if
 BTB hit rate = 90%
 Prediction accuracy = 90% (for instructions in the buffer)
 Branch taken frequency (for I not in buffer) = 60%

 = * 2 + *2

 = 0.90 * 0.1 * 2 + 0.1 * 0.6 * 2

Branch
Penalty

Hit in BTB and
wong prediction Miss in BTB

and taken

20

Fancier BTBs
•  Store target instruction instead of target address
→ BTB access can take longer now (≡ larger BTB)
→ can do “branch folding “

 (achieves zero cycle unconditional BR and sometimes
zero cycle cond. BR.)

Processsor target

cache

Uncond. Br.
BTB

Zero cost
unconditional Br

21

Integrated Instruction Fetch Units
•  Have a fancy module that implements IF in

multiple cycles (since it has to provide multiple I)
•  IFU performs the following functions:

–  Branch prediction
–  Instruction prefetch
–  Buffering of instructions (may come from multiple

cache lines, etc)

•  IFU provides I to the issue stage

22

 •  Handling indirect jumps (from procedure returns)
–  cannot use traditional BTB’s (target changes)
–  use a stack : push the return addr on a call; pop it at

return. For example 1 - 16 entries

•  Fetch from both the predicted and unpredicted direction:
–  Some processors have used
–  costly

Return Address Predictors

Other

