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Dynamic Hardware Branch Prediction 
•  Control  hazards are sources of losses , especially for 

processors that want to issue > 1 instr / cycle 
•  Proposed approach : use HW to dynamically predict the 

outcome of a branch (may change with time) 

1   Branch prediction buffer (a.k.a. branch history table) 
–  Small memory indexed by lower bits of addr of branch 

instruction 
–  Contains 1 bit that says if branch was recently taken 
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   Note : the prediction may refer to another branch that has 
some low-order address bits 

•  If hint is wrong : prediction bit is inverted 
•  Problem : if branch is taken 9 times in a row in a loop we 

have two mispredictions 

2  Two-bit prediction schemes  
•  Need to mispredict twice before changing the predict 

See Figure C.18 
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Figure C.18 
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     3.  N-bit saturating counter 
•  n bit counter can take from 0 to 2  - 1 
•  if count ≥ 2     branch predict taken 

 else predict untaken 
•  if taken, increment ; if untaken , decrement 

Accuracy : 4096 entries in table, 2 bits  
   →   misprediction rate ≈1 - 18% in spec89 
   →   usually better at FP programs (more loops) 

n

n-1 
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   4  Look at recent behavior of other branches too 
   “correlating predictors or two-level predictors” 
     if ( d == 0) 
   d =1 ; 

 if (d == 1) 
 e.g scheme where each branch has 2 separate bits 
  

 
  prediction used          prediction used if 
  if the last branch        the last branch taken 
  not taken   

 

example →  works very well for b2 
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  → correct prediction for b1 is by chance 
 b2 will always work (every execution) except if d=1 

     This is called a (1 ,  1)  predictor 
       last         choose among  
     branch        2 states (1 bit) 

 

  Can be ( m , n ) 
  look at     use n bits 

                last m         to predict 
                branches }

Easy hardware to 
remember outcome of 

last m branches 
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   •  A two bit predictor with no global history is a (0,2) 
predictor 

  # bits in an (m,n) predictor ? 
 
    2   * n * #entries 
    e.g (2,2)  
 

m



9 

Tournament Predictors 
•  Use multiple predictors, usually 

–  One based on global info 
–  One based on local info 
–  Combining them with a selector 

•  They do very well 
•  They are a popular form of  Multilevel branch predictors (use 

several levels of branch prediction tables together with an 
algorithm for choosing among them) 

•  Existing ones: use a 2-bit saturating counter per branch to 
choose among two different predictors (the four states of the 
counter dictate whether to use predictor 1 or 2) 
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Tournament Predictors 
•  The counter is incremented whenever the predicted predictor is 

correct and the other is incorrect, and is decremented in the 
reverse situation 

•  Advantage: ability to select the right predictor for right branch 
•  Figure 3.3: fraction of  predictions that use the local predictor 
•  Figure 3.4: comparing local/global/tournament 
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Figure 3.3 Comparison of 2-bit predictors. A noncorrelating predictor for 4096 bits is first, followed by a noncorrelating 2-bit 
predictor with unlimited entries and a 2-bit predictor with 2 bits of global history and a total of 1024 entries. Although these data 

are for an older version of SPEC, data for more recent SPEC benchmarks would show similar differences in accuracy.  



Copyright © 2011, Elsevier Inc. All rights 
Reserved. 

Figure 3.4 The misprediction rate for three different predictors on SPEC89 as the total number of bits is increased. The predictors 
are a local 2-bit predictor, a correlating predictor that is optimally structured in its use of global and local information at each 

point in the graph, and a tournament predictor. Although these data are for an older version of SPEC, data for more recent SPEC 
benchmarks would show similar behavior, perhaps converging to the asymptotic limit at slightly larger predictor sizes.  
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Branch Target Buffers (BTB) 
•  In addition to predicting the branch,we need to guess the 

target address 
•  If the target address can be determined by end of IF   

 → zero branch penalty 
•  BTB : Small cache that stores the predicted address for the 

next instruction after a branch  
Note: 
•  If we use a branch prediction table   → accessed during ID  

           → branches have 1 cycle penalty 
•  If we use a BTB → accessed during IF 

                     → branches have  0 cycle penalty   
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How a BTB Works 

•  During the IF, we use the addr to access the BTB 
•  If hit, we extract the address of the next inst. to fetch  
•  Note : unlike the branch prediction buffer , the entry must 

be for this instruction, else would fetch something wrong  
•  Note : Only need to store predicted - taken branches 
•  Easiest scheme : Store in the BTB only PC-relative 

conditional branches → target address is a constant  
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•  No branch delay if entry found in BTB and it is correct  
•  There is some cost in updating the BTB in case of 

misprediction or wrong target 
•  We do not try to update BTB while fetching instr 

  → could not access it 
  → best to stall 1 or 2 cycles 

•  Can be combined with a branch prediction table to decide 
when to put entries in BTB 

See Figure 3.21  and Figure 3.22 
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Figure 3.21 A branch-target buffer. The PC of the instruction being fetched is matched against a set of instruction addresses stored 
in the first column; these represent the addresses of known branches. If the PC matches one of these entries, then the instruction 

being fetched is a taken branch, and the second field, predicted PC, contains the prediction for the next PC after the branch. 
Fetching begins immediately at that address. The third field, which is optional, may be used for extra prediction state bits.  
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Figure 3.22 The steps involved in handling an instruction with a branch-target buffer.  
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•  If  branch not correctly predicted (not taken or taken to 

wrong target ) : 1 cycle update BTB 
       1 cycle to restart fetching 

•  If branch not found & taken: 2 cycles update BTB 
 

See figure 3.23 
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Example  : Find branch penalty if 
   BTB hit rate = 90%  
   Prediction accuracy = 90% (for instructions in the buffer) 
   Branch taken frequency (for I not in buffer) = 60% 
 
                 

        =                            * 2 +                        *2 
 
 
  =     0.90 * 0.1 * 2 + 0.1 * 0.6 * 2 
   
 

Branch   
Penalty 

Hit in BTB and 
wong prediction Miss in BTB 

and taken 
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Fancier BTBs 
•  Store target instruction instead of target address  
→ BTB access can take longer now ( ≡ larger BTB) 
→ can do “branch folding “ 

  (achieves zero cycle unconditional BR and sometimes 
zero cycle cond. BR.) 

 
Processsor  target 

cache 

Uncond. Br. 
BTB 

Zero cost 
unconditional Br 



21 

Integrated Instruction Fetch Units 
•  Have a fancy module that implements IF in 

multiple cycles (since it has to provide multiple I) 
•  IFU performs the following functions: 

–  Branch prediction 
–  Instruction prefetch 
–  Buffering of instructions (may come from multiple 

cache lines, etc) 

•  IFU provides I to the issue stage 
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  •  Handling indirect jumps (from procedure returns) 
–  cannot use traditional BTB’s (target changes) 
–  use a stack : push the return addr on a call;  pop it at 

return. For example 1 - 16 entries 

•  Fetch from both the predicted and unpredicted direction: 
–  Some processors have used 
–  costly 

Return Address Predictors 

Other 


