
Copyright J. Torrellas 1999,2001,2002,2007,2013 1

Chapter 3

Instructor: Josep Torrellas
CS433

2

Instruction Level Parallelism (ILP)
•  Would like to exploit the independence of instructions in order to allow

overlap of these instructions in the pipeline
•  Amount of parallelism among instructions may be small - need ways to

exploit the parallelism within the code
•  Can substantially reduce the amount of work that is needed to run the

code

Potential Drawback
•  From the last chapter we know :
•  Pipeline CPI = Ideal Pipeline CPI + Structural Stalls + RAW stalls +

 WAR stalls + WAW stalls + Control stalls
•  With the simple pipeline only concerned with RAW and control stalls,

advanced techniques make WAR stalls and WAW stalls new concerns
that must be dealt with

3

Obstacles to ILP - Dependences
•  Data Dependence - due to one instruction producing the result needed by another

instruction
 ie L5: LD F4, 0(R3)
 ADDD F6,F4,F2 ; data dependent on LD
 SD 0(R3),F6 ; data dependent on ADDD

•  Name Dependence - due to two instructions using the same register or memory
location, without the flow of data between the instructions.

 ie 1 L5: LD F4,O(R3)
 2 ADDD F6,F4,F2 ; data dependent on 1
 3 SD O(R3),F6 ; data dependent on 2
 4 LD F4,-8(R3) ; name dependent on 1+2

 5 ADDD F6,F4,F2 ; data dependent on 4, name dependent on 2+3
 6 SD -8(R3),F6 ; data dependent on 5
 7 SUBI R1,R1,#16
 8 BNEZ R1,L5 ; data dependent on 7

4

 •  Antidependence - corresponds to a WAR hazard - instructions i + c writes a
register that instruction i reads

•  Output Dependence - corresponds to a WAW hazard - instruction i and i + c
write the same register or memory location

•  Control Dependence - ordering of instructions must be determined so that a
non-branch instruction only executes when it should - due to branches

ie 1 L5: LD F4,0(R3)
 2 ADDD F6,F4,F2
 3 SD 0(R3),F6
 4 SUBI R1,R1,#8
 5 BNEZ R1,exit
 6 LD F4,0(R3) ; control dependent on 5
 7 ADDD F6,F4,F2 ; control dependent on 5
 8 SD 0(R3),F6 ; control dependent on 5
 9 SUBI R1,R1,#8 ; control dependent on 5
 10 BNEZ R1,L5 ; control dependent on 5
 exit :

5

 •  Antidependences - Register renaming - can be static or dynamic -
simply use different registers for each “body” of code

 ie 1 L5: LD F4,0(R3)
 2 ADDD F6,F4,F2
 3 SD 0(R3),F6 ; end of body 1
 4 LD F9,-8(R3)
 5 ADDD F11,F9,F7
 6 SD -8(R3),F11 ; end of body 2
 7 SUBI R1,R1,#16
 8 BNEZ R1,L5

 Eliminating Dependencies

6

 •  Control dependences -eliminate intermediate branches
 ie 1 L5: LD F4,0(R3) L5: LD F4,0(R3)
 2 ADDD F6,F4,F2 ADDD F6,F4,F2
 3 SD 0(R3),F6 SD 0(R3),F6
 4 SUBI R1,R1,#8
 5 BNEZ R1,L5 LD F4,0(R3)
 6 LD F4,0(R3) ADDD F6,F4,F2
 7 ADDD F6,F4,F2 SD 0(R3),F6
 8 SD 0(R3),F6 SUBI R1,R1,#16
 9 SUBI R1,R1,#8 BNEZ R1,L5
 10 BNEZ R1,L5

 Eliminating Dependencies

7

 + Also reduces static and dynamic IC
 - total iterations must be a multiple of number of “bodies”

•  What about data dependences ?
 We usually dont eliminate Data dependences - we try to avoid Data
Dependences - ie scheduling

8

 Dynamic Scheduling
•  Static Scheduling : if there is a hazard, stop the issue of the

 instruction and the ones that follow
•  Dynamic Scheduling : hardware rearranges the exec of

 instructions to reduce stalls

+ handles cases when dependences are unknown at compile
time (e.g. involve a mem. ref.)

+ simplify compiler
+ allows code compiled for 1 pipeline to run on another
- significant hardware complexity

9

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14 ← stuck, even though not dependent
•  After the instruction fetch:

–  Check structural hazards
–  Wait for the absence of data hazard

 Issue RDOp → wait until no data hazards , then read

 operands

 ID

Why Dynamic Scheduling ?

decode , check for structural hazard

10

 issue RDOp EX EX EX Have WAR hazards:
 in DIVD F0
 order instructions ADDD F10,F0,F8
 always may bypass each other SUBD F8

2. Techniques: Have WAW hazards:
•  Scoreboarding DIVD F0
•  Tomasulo algorithm ADDD F8,F0
 SUBD F8

Called: Dynamically scheduled or out-of-order execution machines

11

Scoreboarding
•  Allows out of order execution, stalling if WAR,WAW
•  Multiple instructions in the EX stage → multiple FU’s
•  Example: 2 MPYD, 1ADDD, 1DIVD, 1Integer (mem/br/ops)
•  Scoreboard : Structure where a record of the data dependences

is constructed (at issue stage)
 → controls: 1 when instr can RDOp

 2 when instr can execute
 3 when instr can write to reg

12

Inst Steps (No mem)
•  Issue: if FU is free and no active inst has same dest

register (WAW) → issue
 → else stall [this inst and following ones]

•  RDOp : wait until source ops are available (no one is in the
process of writing) (RAW).

 Regs only read when both available
•  EX:
•  WB: Stall if WAR hazard DIVD F0

 ADDD F10,F0,F8
 SUBD F8
or WB conflict

{
•  No Forwading

13

Summary

RAW (both operands read at a time)

FU is used (Struct)
WAW

WB EX RO IS

WAR
WB conflict

No Forwarding
Note: FU free after EX

14

See Figure C.55

15

Parts of Scoreboard

•  Instruction status : where the instructions are
•  FU status : State of FU
•  Reg status : Which FU will write it

16

See Figure C.56 and Figure C.57

17

What Limits Scoreboarding ?
•  Amount of parallelism in instructions (better be beyond BB)
•  # of Scoreboard entries (instruc. window)
•  # and types of FU’s → structural hazards
•  presence of WAR, WAW

 can be removed with
 register renaming → use “virtual registers”

 Tomasulo’s algorithm

18

Tomasulo
•  basic ideas

–  Reserv. stations fetch and buffer ops as soon as they are
available no need to operate from registers

–  As instructions are issued : reg specifiers for pending
operands are renamed to names of reserv. stations

Register renaming that avoids WAW and WAR

19

DIV F0,F2,F4
ADD F6,F0,F8
S F6,0(R1)
SUB F8,F10,F14
MUL F6,F10,F8

DIV F0,F2,F4
ADD S,F0,F8
S S,0(R1)
SUB T,F10,F14
MUL F6,F10,T

Renaming

20

Tomasulo
•  Register renaming provided by the reservation stations:

–  buffer the operands of instructions waiting to execute
–  Pending instructions designate the reservation station that will

provide their input àeffectively a register
–  When successive writes to a register overlap in execution, only the

last one is actually used to update the register

•  Other characteristics of Tomasulo:
–  Hazard detection and execution control are distributed
–  Bypassing everywhere (use the common data bus CDB – all units

waiting for a result can loaded simultaneously)

21

Figure 3.6

22

•  reservation stations : instr waiting execution
•  Ld buffers : hold data/addr coming from mem
•  St buffers : hold data/addr going to mem
•  All buffers & res stations have tags for hazard

control

Components

23

•  Issue :
–  get next instr from instruction queue
–  issue it to empty reservation station
–  send operands to the rs; if ops not ready, write the rs that will produce them
–  if no reserv stations / buffers: structural Hz , stall
–  This step renames registers, eliminating WAR and WAW

•  EX:
–  monitor bus for available operand
–  when available, put it in rs
–  when all ops ready, execute
–  By delaying until all ops are available, handle RAW
–  Independent functional units can begin executing in the same cycle
–  If two rs in the same FU become ready in the same cycle, one is chosen to

execute

Steps of an Instruction

24

•  EX (cont):
–  Ld/st have a two-step execution
–  First step: compute effective address when base register is available and then

eff. addr. is placed in the load or store buffer
–  Second step: actual mem access
–  Ld/st are maintained in program order through effective addr calculation
–  For now: do not allow EX of any instruction following a branch until the

branch is resolved (later: allow EX, not allow WB)

•  WR:
–  write result on bus. From there, it goes to regs & res. Stations/buffers
–  If store: write to memory

Steps of an Instruction (Cont)

25

•  Done by tags attached to rs, regs, buffers
•  They are names for extended set of virtual regs used in renaming
•  Tag: field that encodes a name for the rs and load buffs
•  Rs/buffs are like registers
•  Once an instruction is waiting for an operand, it refers to the

operand with the tag number of the rs/buff that will produce it
•  Since there are more rs than architectural registers à WAW and

WAR hazards are eliminated by renaming results with rs

Detecting and Eliminating Hazards

26

State of a Reservation Station
•  Op : operation to be performed
•  Qj Qk : reservation station that will produce the source

operands, or …
•  Vj Vk : value of source operands. For loads, the Vk holds

the offset field
•  A: Holds information for the memory address calculation

for a ld/st. Initially, the immediate field of the instr is stored.
After the address calculation, the effective address is stored.

•  Busy : this is busy
Register file
•  Qi : rs that is computing a value to store here
Load/Store buffs
•  A: effective address

27

Summary

RAW

Structural

WR EX IS

WR conflict

28

Typical assumptions:
•  IS,WR take one cycle each
•  One instruction IS per cycle
•  Functional Units (FUs) not pipelined
•  Results are communicated via the CDB
•  Assume you have as many load/store buffers as needed
•  Loads/stores take 1 cycle to execute
•  Loads/stores share a memory access unit
•  Stores and branches do not have WR
•  If an instruction is in its WR stage in cycle x, then an instruction that is waiting on

the same FU (due to a structural hazard) can start executing on cycle X, unless it
needs to read the CDB, in which case it can only start executing on cycle X+1

•  Only one instruction can write to the CDB in a clock cycle
•  Whenever there is a conflict for the FU, assume that the first (in program order) of

the conflicting instructions gets access, while the others are stalled. This includes
possible WR conflicts

•  When an instruction is done executing in its functional unit and is waiting for the
CDB, it is still occupying the functional unit and its reservation stations, and no
other instruction may enter

29

See Figure 3.7

30

 Differences over scoreboard
 1. Value of operand in one of the fields of a rs is read from the
output of FU, not from a reg

 2. WAR: ADDD can complete before DIVD initiates

Advantages of Tomasulo

 1. Distributed hazard detection logic: multiple instructions
waiting on a single result:broadcast in CDB releases all

 2. Removes stalls for WAW,WAR
 LD F6,…..
 DIVD F10 F0 F6 ; rs points to Load1 reservation station
 ADD F6 F8 F2 ; reg file receives output of Add2, not of

 Load1

{WAR

WAW

31

See Figure 3.8

32

More on elimination of WAW, WAR
Loop : LD F0,0(R1)
 MULTD F4,F0,F2
 SD F4,0(R1)
 DADDUI R1,R1,-8
 BNE R1,R2,Loop
•  predict that branches will be taken loop is unrolled

 dynamically by the hardware (no need many regs)

 LD ST
 Load2 Mult2
 Load1 Mult1
 Load1 Load2
 Mult1 Mult2

F2 F2

F0: LdBuff2

F4: Mult2

33

See Figure 3.10

34

…however , need dynamic disambiguation of address
 stall if addr Ld2 = addr pending stores (or forward)

 or if addr St2 = addr pending loads or stores

else , could execute iterations out of order

pbms: hardware intensive
 CDB bottleneck (if replicate, replicate logic too)

key features dynamic scheduling
 register renaming
 dynamic memory disambiguation

