
Copyright Josep Torrellas 1999, 2001, 2002,2013 1

Appendix B Again

Instructor: Josep Torrellas
CS433

2

Reducing Prefetching Overhead: Loop
Unrolling + Software Pipelining

prefetch(A[0])

…

prefetch(A[11])

for(i=0,i<n;i+=4){

 prefetch(A[i+12])

 …=a[i]

 …=a[i+1]

 …=a[i+2]

 …=a[i+3]

}

SW pipe

for(i=0,i<n;i++){

 if(i%4==0)

 prefetch(A[i]);

 …=a[i]

}

for(i=0,i<n;i++){

prefetch(A[i])

…=a[i]

}

for(i=0,i<n;i+=4){

 prefetch(A[i])

 …=a[i]

 …=a[i+1]

 …=a[i+2]

 …=a[i+3]

}

Unroll

3

Virtual Memory

•  At any point : many processes running
 → each has a huge virtual address space
 → they share a single physical memory

Vmem : protection is ensured

 : program does not have to be completely loaded to
 run, can be relocated dynamically.

Proc 1 Proc 1 Proc 3

VA VA VA PA

4

Terminology
•  Page or Segment : block
•  Page fault or address fault : miss in VA → PA translation
•  CPU issues Vaddresses ; translated to Paddresses
•  Process of translation is called memory mapping or

address translation

See Figure B.20

5

Difference between Caches and Vmemory

•  Replacement → cache misses : in HW

 → VM : by the OS since long miss penalty

 and important make good choice

•  Cache size is independent of address size , not VM

6

•  Paged : uses pages; fixed size

•  Segmented : use segments, variable sizes
•  Most machines use paging or hybrid (paged segments)

 because of replacement ease

Types of VM systems

Figure B.21

7

•  Where can a block be placed in memory ?
 For lower miss rate, fully assoc

•  How to find a block in memory ?
 Check page table, a data structure that is indexed by the
VPpage # and contains PPage #

PP #1

PP #2
PP #3
PP #4

Page Table

8

•  Which block to replace on a miss:
to minimize misses : use LRU (using a reference bit)
•  What happens on a write ?

 Obviously not write through .
 Include a dirty bit , when replace page, if dirty, write back
to a disk

•  fast address translation :
 →naïve approach : each mem access takes two accesses
 1. Access page table
 2. Access data
 →Solution : remember the last few translations on chip
(TLB)

Page Table (II)

9

•  Why does TLB work ? Address translations have locality

•  TLB smaller /faster than cache
•  How to select page size ?

 Larger → smaller pg table
 → can use virtual index cache
 → efficient transfer to I/O
 → lower TLB misses (can be variable size page)
Smaller: conserving storage

VPN
Protection bits

valid bit

use bit

dirty bit

PPN

Translation Lookaside Buffer (TLB)

10

No translation during indexing of the cache
(page B-36)

•  Want to reduces hit time
•  usually , caches are physically addressed
•  could we use virtual caches ? (use virtual addresses)

–  need to flush at context switches : bad
–  or add PIDS (recycle problems)

11

•  Alternative : virtually indexed , physically tagged cache

Overlap reading tag + data with VA to PA translation
* limitation ; direct mapped cache <= 1 page

 or , if associative : each bank <= 1page
 (other approaches possible)

VA Offset Phys
Tag

Virtually Indexed, Physically Tagged

12

For Fully VA Caches
→ What if OS and user pgm use 2 diff VA to refer to same

PA ? (synonyms or aliases)
–  then : if both in cache , one may be modified and not

the other
→ how to solve synonym problem ? Page coloring

 aliases need to have identical low X bits of their VA
e.g SUN: 18 bits
 PA VA cache

The two VA

cannot be in 256 KB

cache or less at same
time

13

Other Issues
•  For multiple issue processors : cache must supply lots of

 bandwidth. IBM RS/6000
 issue 6 inst/cycle
 data cache : 2*16B /cycle

•  Pitfall : ignore impact of OS on performance of Mem

hierarchy [Figure B.29: very famous researcher]

