
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 2 (cont)

Instructor: Josep Torrellas
CS433

2

Improving Cache Performance
Average mem access time = hit time + miss rate * miss penalty
 speed up reduce reduce

1. Reduce miss penalty: multilevel caches, critical word first, read miss

before write miss, merging write buffers, victim caches
2. Reduce miss rate: larger block size, larger cache size, higher associativity,

way prediction and pseudoassociativity, compiler optimizations
3. Reduce miss rate/penalty via parallelism: non-blocking caches,

prefetching
4. Reduce the hit time: small and simple caches, avoiding address

translation, pipelined cache access, and trace caches

3

Types of Misses

1. Compulsory : First access
2. Capacity : cache cannot contain all blocks
3. Conflict : too many blocks map into same set

How to compute them ?

4

How to Remove Misses

•  Conflict : Increase associativity → expensive in H/W
 → slow processor clock

•  Capacity : Enlarge cache → expensive
 → slow

•  Compulsory : Enlarge line (block) size
 → may increase conflict

5

Larger Block Size

–  Relation to miss rate
•  fewer compulsory misses (spatial locality)
•  increase conflict and capacity misses

–  Relation to Miss penalty
•  increase it : miss penalty = a + b * c
 b = block size

⇒ high latency and high
 bandwidth usually 32 - 64
 blocks

} longer blocks

6

Larger Caches
Higher Associativity

–  8- way ≅ fully associative
–  2:1 cache rule of thumb :

dir mapped size N ≅ 2-way set associative size
N/2

–  Increased assoc : + decreases misses
 - increases hit time

7

Second Level Caches
It is like making the cache faster and bigger at the same time .

 → primary cache : small to match CPU speeds
→secondary cache ; large to capture most accesses
Avg = Hit time + Miss rate * miss penalty

 hit time + miss rate * miss penalty

For the secondary cache :
•  Local miss rate : high !

•  Global Miss rate : more intuitive

L1 L1 L1

L2 L2 L2

Of the left overs! “Local Miss rate”

misses L2

accesses L2
misses L2

 # accesses by CPU

8

Issues in Secondary Cache
•  Does it lower the AMAT portion of the CPI ?
•  How much does it cost ?

Note: SLC much larger than FLC (else miss rate no change)

–  can use higher associativity for SLC
–  can use longer blocks in SLC (not conflicts)
–  Multilevel inclusion property :

•  desirable because of consistency
– w/ I/o
– w/ other caches in an MP

}only check SLC

9

Optimizations

Ten advanced optimizations.

10

1. Reducing Hit Time with small/simple
caches

→ Often determines the average memory access time
→ the smaller , the faster
→ needs to fit on chip
→ use dir-mapped cache

11

•  hit is same
•  if miss , before going to next level of mem hierarchy,

 another cache entry is checked (e.g invert the most
significant bit of the index field)

•  there is a fast regular hit
 slow pseudo hit
•  when pseudo hit swap entries

}hit time

hit

pseudo Miss penalty
}

Complicates

pipelined CPU

2. Way Prediction or Pseudo-assoc caches

12

Example for pseudo-assoc caches :

Avg = htdm + mr1 *mp = htdm + mr1 (htalt+mr2*mp)

htalt
mp

1) if htdm

Avg = htdm + mr1 *htalt + mr1*mr2*mp

13

More Optimizations

3) Pipelined cache access to increase cache bandwidth

14

4. Non Blocking Caches
•  Suppose a dynamically scheduled processor → out

of order completion : processor continues fetching
instructions while waiting for the data cache to
supply missed data

•  Non blocking or lookup free cache : data supplied
 → hit under a miss
 → miss under a miss

What if miss on a line that is being requested?

15

6. Early Restart and Critical Word First
 ER: As soon as the requested word arrives , continue
 CWF(or wrapped first) : get the requested word first and
continue

5. Multibanked caches

16

7. Merging Write Buffer

Figure 2.7

17

A. Give priority to read misses over writes
Write through cache :

 → writes stacked in the write buffer
 → read miss: check if no conflict w/any write in buffer
 if not , bypass writes.

Write back cache :
 → read min displacing a dirty line
 → move the dirty line to a buffer
 → issue the read miss access
 → write the line back later

Two Additional Optimizations:

18

•  Checked on a miss
•  If found , swap entries
•  1-5 entries . Fully assoc ;
•  good for small , direct mapped caches

B. Victim Cache

Add a small, fully assoc cache between a cache and its refill path.
Contains blocks that are dissociated from cache

19

 8. Compiler Optimizations to reduce miss rate
 A.Code reorganization - procedure level
 - basic block level

20

 •  B. Data reorganization à improve spatial/temporal locality of
data. For example, loop interchange:

for(j=0;j<100;j=j+1) {
 for(I=0;I<5000;I=I+1){

 x[i][j] = 2 * x [i][j];
 }
}
for(I=0;I<5000;I=I+1){
 for (j=0;j<100;j=j+1) {
 x[i][j] = 2 * x [i][j];
 }
}

21

Blocking
•  Improve temporal locality
•  One array accessed in row major; another one in column

major
•  Instead of operating on entire rows/columns,operate on

submatrices or blocks
•  Goal: maximize reuse of data loaded into the cache before

 data is replaced
for(i=0;i<n;i=i+1)

 for(j=0;j<n;j=j+1) {
 r = 0;

 for(k=0;k<n;k=k+1)
 r=r+y[i][k]*z[k][j];
 x[i][j] = r;
}

22 Figure 2.8

23
Figure 2.9

Suppose that z overflows the cache àcompute on a
submatrix of B*B; B= blocking factor;

for(jj = 0; jj<n; jj= jj + BB)
 for(kk=0;kk<n;kk=kk+BB)
 for(I = 0;I<n;I=I+1)
 for(j=jj;j<min(jj=B-1,N);j=j+1){
 r = 0;
 for(k=kk;k<min(kk+B-1;n);k=k+1) {

 r=r+y[I][k]*z[k][j];
 }
 x[I][j]=x[I][j] + r;
 }

 }
} 24

25

9. Hardware Prefetching of I,D

•  Prefetch : access items before they are needed and deposit

them into caches or external buffers
•  I prefetching: e.g. fetch next block on a miss or

 on access. The prefetched block goes to a “stream
buffer” (or cache)

•  D prefetching : same idea
 could have several stream buffers to capture several
localities

•  careful uses BWdth

26

10. Compiler Controlled Prefetching

•  Compiler inserts prefetch instructions
•  Register prefetch : into a reg. (+ cache)
•  Cache prefetch : into the cache
•  Can be faulting : causes an exception if protection violation
 non faulting : turns to No op if it would cause

 an exception
•  Needs a “ non blocking “ or “ lockup free “ cache:

 cache can be accessed while there is a prefetch / miss

 pending.

27

Example

8 KB dir mapped cache with 16 B blocks
Each element of “ a” and ‘b” is 8 byte long

 3r,100c 101r,3c
for(i=0;i<3;i=i+1)

 for(j=0;j<100;j=j+1)
 a[i][j]= b[j][0] * b[j+1][0]

a: even value miss; odd hit (spatial loc) 150 misses
b: no spatial loc ; temp loc ;
 suppose no conflicts , miss 101 times
TOTAL= 251 misses

28

•  Usually works in loops
•  can be combined with loop unrolling

 software pipelining
•  pbm: has overhead

Prefetching

29

 •  Simplifications: 1) not worry about first few misses,
 2) not a faulting pref
•  Split so that first loop pref a,b
 second “ “ a
•  assume long latency of miss prefetch 7 iterations ahead
for(j=0;j<100;j=j+1) {

 prefetch(b[j+8][0]);
 prefetch(a[0][j+7]);
 a[0][j] = b[j][0]*b[j+1][0];
}
for(I=1;I<3;I=I+1){
 for (j=0;j<100;j=j+1) {
 prefetch(a[I][j+7]);
 a[I][j]=b[j][0]*b[j+1][0];
 }
}

30

 We are prefetching a[0][7] - a[0][99]
 a[1][7] - a[1][99]

 a[2][7] - a[2][99]
 b[8][0] - b[100][0]
 only left with:
 8 misses for b b[0][0]….b[7][0]
 12 misses for a: a[0][0] a[0][2] a[0][4] a[0][6]
 a[1][0] a[1][2] a[1][4] a[1][6]
 a[2][0] a[2][2] a[2][4] a[2][6]

so executing 400 instructions
 avoiding 231 misses

