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Chapter 2 (cont) 

Instructor: Josep Torrellas 
CS433 
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Improving Cache Performance  
Average mem access time = hit time + miss rate * miss penalty 
                                             speed up     reduce        reduce 
 
1. Reduce miss penalty: multilevel caches, critical word first, read miss 

before write miss, merging write buffers, victim caches 
2. Reduce miss rate: larger block size, larger cache size, higher associativity, 

way prediction and pseudoassociativity, compiler optimizations 
3. Reduce miss rate/penalty via parallelism: non-blocking caches, 

prefetching 
4. Reduce the hit time: small and simple caches, avoiding address 

translation, pipelined cache access, and trace caches 
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Types of Misses  
 
1. Compulsory : First access 
2. Capacity : cache cannot contain all blocks 
3. Conflict : too many blocks map into same set 
 
How to compute them ? 
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How to Remove Misses 

•  Conflict : Increase associativity → expensive in H/W 
             → slow processor clock 

•  Capacity : Enlarge cache → expensive  
             → slow 

•  Compulsory : Enlarge line (block) size 
     → may increase conflict      
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Larger Block Size 
 

–  Relation to miss rate 
•  fewer compulsory misses (spatial locality) 
•  increase conflict and capacity misses 

–  Relation to Miss penalty  
•  increase it : miss penalty = a + b * c 
                                                 b = block size   
 

⇒ high latency and high 
     bandwidth                                            usually 32 - 64 
                                                                      blocks   

} longer blocks 
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Larger Caches  
Higher Associativity 

–  8- way ≅ fully associative  
–  2:1 cache rule of thumb : 

dir mapped size N ≅ 2-way set associative size 
N/2 

–  Increased assoc :   + decreases misses 
             - increases hit time 
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Second Level Caches 
It is like making the cache faster and bigger at the same time . 

 → primary cache : small to match CPU speeds 
→secondary cache ; large to capture most accesses 
Avg = Hit time    + Miss rate     *  miss penalty 
 

       hit time     +  miss rate    *  miss penalty 
 
                                       
For the secondary cache : 
•  Local miss rate :                             high !    

•  Global Miss rate :                                  more intuitive  
 

L1 L1 L1 

L2 L2 L2 

Of the left overs!  “Local Miss rate”  

# misses L2  

# accesses L2 
# misses L2  

  # accesses by CPU 
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Issues in Secondary Cache    
•  Does it lower the AMAT portion of the CPI ? 
•  How much does it cost ? 
 
Note: SLC much larger than FLC (else miss rate no change) 

–  can use higher associativity for SLC 
–  can use longer blocks in SLC (not conflicts) 
–  Multilevel inclusion property : 

•  desirable because of consistency 
– w/  I/o   
– w/ other caches in an MP 

}only check SLC 
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Optimizations  
 
Ten advanced optimizations. 
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1. Reducing Hit Time with small/simple 
caches 

→ Often determines the average memory access time 
→ the smaller , the faster 
→ needs to fit on chip 
→ use dir-mapped cache  
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•  hit is same 
•  if miss , before going to next level of mem hierarchy, 

 another cache entry is checked (e.g invert the most 
significant bit of the index field ) 

•  there is a fast                        regular hit 
                    slow                      pseudo hit 
•  when pseudo hit           swap entries 
  
 

}hit time 

hit 

pseudo Miss penalty 
} 

Complicates 

pipelined CPU 

2.  Way Prediction or Pseudo-assoc caches 
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Example for pseudo-assoc caches : 

Avg = htdm + mr1 *mp = htdm + mr1 (htalt+mr2*mp) 

htalt 
mp 

1) if htdm 

Avg = htdm + mr1 *htalt + mr1*mr2*mp 
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More Optimizations 

3) Pipelined cache access to increase cache bandwidth 
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4. Non Blocking Caches 
•  Suppose a dynamically scheduled processor → out 

of order completion : processor continues fetching 
instructions while waiting for the data cache to 
supply missed data 

•  Non blocking or lookup free cache : data supplied 
  → hit under a miss 
  → miss under a miss 

What if miss on a line that is being requested? 
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6. Early Restart and Critical Word First 
 ER: As soon as the requested word arrives , continue 
 CWF(or wrapped first) : get the requested word first and 
continue    

  

5. Multibanked caches 
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7. Merging Write Buffer 
 

Figure 2.7 
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A. Give priority to read misses over writes 
Write through cache : 

 → writes stacked in the write buffer 
  → read miss: check if no conflict w/any write in buffer  
       if not , bypass writes. 

Write back cache :  
  → read min displacing a dirty line  
  → move the dirty line to a buffer  
  → issue the read miss access 
  → write the line back later   

Two Additional Optimizations:  
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•  Checked on a miss 
•  If found , swap entries  
•  1-5 entries . Fully assoc ; 
•  good for small , direct mapped caches 

 

B. Victim Cache 

Add a small, fully assoc cache between a cache and its refill path.  
Contains blocks that are dissociated from cache   
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  8. Compiler Optimizations to reduce miss rate 
   A.Code reorganization - procedure level 
                                         - basic block level    
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  •  B. Data reorganization à improve spatial/temporal locality of 
data. For example, loop interchange: 

for(j=0;j<100;j=j+1) { 
 for(I=0;I<5000;I=I+1){ 

       x[i][j] = 2 * x [i][j]; 
     } 
} 
for(I=0;I<5000;I=I+1){ 
  for (j=0;j<100;j=j+1) { 
       x[i][j] = 2 * x [i][j];  
  } 
} 
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Blocking 
•  Improve temporal locality 
•  One array accessed in row major; another one in column 

major 
•  Instead of operating on entire rows/columns,operate on 

submatrices or blocks 
•  Goal: maximize reuse of data loaded into the cache before 

   data is replaced 
for(i=0;i<n;i=i+1) 

 for(j=0;j<n;j=j+1) { 
    r = 0; 

        for(k=0;k<n;k=k+1)    
            r=r+y[i][k]*z[k][j]; 
        x[i][j] = r; 
}  
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Figure 2.9 



Suppose that z overflows the cache àcompute on  a 
submatrix of  B*B; B= blocking factor; 

for(jj = 0; jj<n; jj= jj + BB) 
 for(kk=0;kk<n;kk=kk+BB) 
  for(I = 0;I<n;I=I+1) 
       for(j=jj;j<min(jj=B-1,N);j=j+1){ 
   r = 0; 
   for(k=kk;k<min(kk+B-1;n);k=k+1) { 

                  r=r+y[I][k]*z[k][j]; 
   } 
              x[I][j]=x[I][j] + r; 
  } 

     } 
}   24 
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9. Hardware Prefetching of I,D 
 
•  Prefetch : access items before they are needed and deposit 

them into caches or external buffers 
•  I prefetching:  e.g. fetch next block on a miss or 

 on access. The prefetched block goes to a “stream 
buffer” (or cache) 

•  D prefetching : same idea 
 could have several stream buffers to capture several 
localities 

•  careful uses BWdth 
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10. Compiler  Controlled Prefetching  

•  Compiler inserts prefetch instructions  
•  Register prefetch : into a reg. (+ cache) 
•  Cache prefetch : into the cache 
•  Can be       faulting : causes an exception if protection violation  
                      non faulting : turns to No op if it would cause                          

  an exception  
•  Needs a “ non blocking “ or “ lockup free “ cache: 

 cache  can be accessed while there is a prefetch / miss  

 pending.  
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Example  
  
8 KB dir mapped cache with 16 B blocks  
Each element of  “ a” and  ‘b” is  8 byte long  
      
               3r,100c                   101r,3c 
for(i=0;i<3;i=i+1) 

 for(j=0;j<100;j=j+1) 
  a[i][j]= b[j][0] * b[j+1][0] 

a: even value miss; odd hit (spatial loc)    150 misses  
b: no spatial loc ; temp loc ; 
    suppose no conflicts , miss 101 times 
TOTAL= 251 misses 
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•  Usually works in loops 
•  can be combined with loop unrolling  

       software pipelining 
•  pbm: has overhead  

Prefetching  
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  •  Simplifications: 1) not worry about first few misses,  
                               2) not a  faulting pref  
•  Split so that first loop pref a,b 
                         second “    “    a 
•  assume long latency of miss    prefetch 7 iterations ahead      
for(j=0;j<100;j=j+1) { 

 prefetch(b[j+8][0]); 
     prefetch(a[0][j+7]); 
     a[0][j] = b[j][0]*b[j+1][0]; 
} 
for(I=1;I<3;I=I+1){ 
  for (j=0;j<100;j=j+1) { 
       prefetch(a[I][j+7]); 
       a[I][j]=b[j][0]*b[j+1][0]; 
  } 
} 
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  We are prefetching  a[0][7] - a[0][99] 
            a[1][7] - a[1][99] 

                  a[2][7] - a[2][99] 
                                 b[8][0] - b[100][0] 
                  only left with: 
                         8 misses for b   b[0][0]….b[7][0] 
                         12 misses for a: a[0][0] a[0][2] a[0][4] a[0][6] 
                                                   a[1][0] a[1][2] a[1][4] a[1][6] 
                                                   a[2][0] a[2][2] a[2][4] a[2][6]  
 
so executing 400 instructions  
               avoiding 231 misses   


