
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 2
(Starting with Appendix B)

Instructor: Josep Torrellas
CS433

2

Memory Hierarchy Design

1980 microprocessor à no cache
1995 à 2 level of caches

Why ?
•  Programmers want more memory
•  Principle of locality
•  Processor - memory performance gap
•  Smaller hardware is faster
•  faster ⇒ more expensive

3

Memory Hierarchy

•  Figure 2.1

4

Block → minimum unit of information that can be present in

the cache

 Hit / Miss
 Block placement
 Block identification
 Block replacement
 Write strategy

Cache Blocks (Lines)

5

Block Placement

Block #

0

6

1

7

2

5
4
3

}

}

}

}

Set 0

Set 1

Set 2

Set 3

Block address in memory : 10
Direct mapped : (Block addr) Mod (# blocks in cache)
Block # : 10 MOD 8 = 2
Set Associative : (Block Addr) Mod (# sets in cache)
Set # : 10 MOD 4 = 2
Fully Associative : Anywhere

6

Block Placement

Figure B.2

7

•  Index and block offset not stored
•  Tag
•  Valid bit
•  Associativity ↑ ⇒ Size of tag ↑

Block Identification
Block

Offset
Block Address

Tag Index

8

•  Random
•  Least recently used (LRU)

Block Replacement

9

Write Policy

Writes form 25% of data cache traffic
 7% of total memory traffic

•  Make common case fast ⇒ optimize for reads
•  Also processor waits for reads to complete; need not wait

for writes
•  Easy to make reads fast :

read data in parallel with reading and comparing tag
•  Writes : Block cannot be modified until tag matches
•  Size of write

10

Two Basic Write Policies

•  Write through
•  Write back
•  Dirty bit saves writes
•  Write back ⇒ less memory bandwidth
•  Write through ⇒ read miss never results in write to lower

 level. Easier to implement
•  Write stall during write through

–  use a write buffer

11

On a write miss :
•  Write allocate (fetch on write)
•  No-write allocate (write around)

•  Write miss policy and write policy are independent
•  Write back caches generally use write allocate
•  Write through caches often use no write allocate

Write Miss Policies

12

Cache Performance
 Avg Memory
 Access Time
Example : Compare a 32-KB unified cache with a 16KB I-

cache and 16 KB D-cache.
Given : Miss rates are 1.99% , 0.64% and 6.47% respectively .

75% of memory accesses are instruction references.
Hit 1 clock cycle
Miss 50 clock cycles
Load/Store access in unified cache : adds 1 extra clock cycle

due to structural hazard

= Hit time + Miss rate * Miss Penalty

13

For the split cache,overall miss rate is
(75% * 0.64%) + (25% * 6.47%) = 2.10%

Average memory access time split
= 75% (1+ 0.64% * 50) + 25% * (1+6.47% *50)
= 2.05

Avg memory access time unified
= 75% * (1+1.99% * 50) + 25% *(1+1+1.99% * 50)
= 2.24

14

 CPU CPU Execution Memory stall clock cycle
 time Clock cycles Clock cycles time

Assumption : All memory stalls are due to cache misses.

 = Reads * Read miss rate * Read miss Penalty
 + Writes + Write miss Rate * Write miss Penalty
 = Memory accesses * Miss rate * Miss Penalty

= [+]*

[
Memory stall
clock cycles]

15

 Consider a machine with :
 Cache miss penalty = 50 cycles

 CPI = 2.0
 Miss Rate = 2%
 Memory References per inst = 1.33

 CPU time = IC * (CPI +) * Clock cycle time

 = IC * (2.0 + (1.33 * 2% * 50)) * Clock cycle time

 = IC * 3.33 * Clock Cycle time

Impact of cache: 1.67x
If no cache: 68.5 30x
If perfect CPIexecution: 2.33x

execution

execution

Memory stall
clock cycles
Instruction

16

Cache misses have double - barreled impact on a CPU with

low CPI and fast clock

1. Lower CPI à relative impact
 of FIXED number of cache miss cycles increases

2. Identical memory hierarchy à CPU with faster clock sees

 more stall cycles

Note: in ooo execution processors: part of the memory access

latency is overlapped with computation!

execution

