Chapter 1

Instructor: Josep Torrellas
CS433

Copyright Josep Torrellas 1999, 2001, 2002, 2013

Course Goals

Introduce you to design principles, analysis techniques and design
options in computer architecture

— Instruction set design

— Memory-hierarchy design
— Pipelining

— 1/0

The use of cost/performance as a basis for making decisions about
computer architecture

Computer architecture is exciting
Get you to ask interesting questions about computer architecture

Background

« Assume you have taken:
— A basic computer organization course
— A logic design course
— Assembly language programming

« Assume that you know
— What an instruction set looks like
— How to program in C

The Parts of a Computer

CPU
Integer Control FP
datapath unit datapath
Registers Registers Registers
I/O system Memory system

Cache TLB

Disks

Graphics Display
Network

Main Memory

Performance (vs. VAX-11/780)

Why Study Computer Architecture?

100,000
Inted Xeon € cores, 3.3 3Hz (boos to 3.6 GHz)
lve| Xeor 4 cores, 33 GHz (boovst 10 36 GHz)
Intel Core i7 Extrame 4 cores 3.2 GHz boost 10 3.6 GHz) - 24129
Int2d Core Duo Extreme 2 cores, 3.0 GHz _/‘.Z-’ ?1,371
10.000 Intel Cara 2 Extrame 2 cores, 2 8 Gz g 4;’;(9
R RS NN Craemiarereaissnisisansstessnenscsrnsisaesans asse s AMD Athlon 64 2 8 GHZ - MR e
' ARIES Arnlere o 6 g et I8
Intel Xeon EE 3.2 GHz 7,108
Mtal DBSOEMVA rrotherboard (3,08 GHz. Pentium 4 processor with Hyper-Thraading Technelogy) G043 8881
IBM Powerd, 13 GHz gge* 18
L
Intel VCE20 motherboasd, 1.0 GHz Peatium Il precessor 3,016
Prolessienal Workstation XP1000, 667 Mz 21264A v
1000 - ARSI ... Digtal ApraServer 8400 6/575, 575 MH1 21264 g% 1287
5]
22%/year
) od
OO H-oommmomm e L T LT LT A e R < S T T T R
IBI RSE000/540. 30 MHz,
MIES M2000, 26 1AH2 18
MIPE MA20, 167 MHz
10 o erisssiranisnenss R L ey
AK-11/782, EMEz
S nr B8
1 7 Ll Ll L L L] T

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Performance?

« What do we mean when we say computer A is faster than computer B

« Response time
— Time from start to completion of an event
— Execution time
— Latency

« Throughput
— Amount of work done per unit time
— Bandwidth

Performance

Program execution time is the measure of performance (seconds/program)
Definition of execution time

— Wall clock time, elapsed time as seen by user includes everything (disk,
OS overhead, competition with other jobs).

— CPU time: time CPU computing on your program, excluding 1/0O wait time
« 1. User CPU time
« 2. System CPU time

System Performance: elapsed time of an unloaded system

CPU Performance: user CPU time
— 90.7s: user CPU time

— 12.9s: system CPU time

— 2:39: elapsed time

— 65%: CPU/elapsed

Evaluating Performance

« Use real programs
— CAD, text processing, business applications, scientific applications
— Input, output, options
— May not know what programs users will run

« Kernels:

— Small key pieces (inner loops) of scientific programs where
program spends most of its time

— e.g. Livermore loops, LINPACK
— Amenable to hand analysis

« Toy Benchmarks
— e.g. Quicksort, Puzzle

— Easy to type, predictable results, may use to check correctness of
machine but not as performance benchmark.

Summarizing Performance

Model a real job mix with a smaller set of representative programs
Total execution time is the ultimate measure of performance
Weight benchmarks according to time spent in a real job mix
How do you summarize performance?

A single-number performance summary for the programs expressed in
units of time should be directly proportional to (weighted) execution
time

A single-number performance summary for the programs expressed as
a rate should be inversely proportional to to (weighted) execution time

Summarizing Performance

Given n programs,
— Auverage of execution time: arithmetic mean
(1/n)*(Time 1+ Time 2+ ... + Time_n)

— If performance is expressed as a rate: the average that tracks
execution time: harmonic mean

n / (l/rate 1+ l/rate 2+ ... +1/rate_n)
where rate_j =f (1/Time_j)

10

Summarizing Performance

« \Weighted arithmetic mean
(Time 1*Weight 1+ Time 2*Weight 2 + ...+ Time n*Weight n)
where Weight 1 + Weight 2 + ... + Weight n=1,
and Weight j >0

« \Weighted harmonic mean

1/(Weight 1/Rate 1+ Weight 2/Rate 2 + ... + Weight n/Rate n)
For example, Rate j is the MIPS rate of machine j.

11

Geometric Mean for Normalized
Execution Time

Normalize execution time of a program j to the execution time in a
reference machine

==> Execution time ratio_|j

Geometric mean:
n th root of {(Execution time ratio 1)*...*(Execution time ratio_n)}

12

Make the Common Case Fast

Very important, sort of obvious but often overlooked
Common case is made slower to make a less common case faster

The frequent case is often simpler and can be done faster (e.g. addition
rarely overflows)

Not following this principle can increase design time.
Complex problems should be handled in software
Hardware should provide fast primitives, not complete solutions

13

Amdahl’s Law

Performance gain from improvement of some portion of a computer

Original Observation: Speedup from parallel processing is limited by the
fraction that cannot be parallelized.

In general,
Speedup = ET without enh / ET with enh =ET _old/ET_new

where enh => enhancement
ET new =ET_old * {(1-fraction_enh) + fraction_enh / Speedup_enh}
Speedup = 1/ {(1-fraction_enh) + fraction_enh / Speedup_enh}

14

Application of Amdahl’s Law

Parallel application that is 90% parallel, what is the speedup for
application on 10, 100 and 1000 processors.

— 10% 1/0 and initialization: s
— 90% parallel: p
— S p=1/(s+p/P) =1/(0.1 + 0.9/P)
— S 10=1/(0.1+0.9/10) = 1/0.19 =5.26
— S 100 =1/(0.1+0.9/100) =1/0.109=9.1
— S 1000=9.9

— Diminishing returns in performance

15

Increasing Parallelism

e 9% I/O Inittialization: s

* 91% parallel: p
— S p=1/(s + p/P) =1/(0.09 + 0.91/P)

— S_100 = 1/(0.09 + 0.91/100) = 1/0.099 = 10.09

16

Using Amdahl’s Law

« Making cost performance trade-offs

Application spends 50% time in CPU and 50% of time waiting for 1/0O
Cost of CPU = 1/3, cost of 1/0 = 2/3
New CPU increases CPU performance 5 times and CPU cost 5 times
Is using a new CPU a good idea from a cost/performance standpoint.
— Speedup =1/ (0.5 + 0.5/5) = 1/0.6 = 1.67
— Cost increase = 2/3*1 + 1/3*5 = 2.33

Spend resources proportionately to where time is spent

How much should we increase CPU speed for equal speedup and cost
Increase?

17

CPU Performance

CPU time = CPU clock cycles per program = Clock cycle time

CPU clock cycles per program

CPI = -
Instruction count

CPU time = Instruction count*CPI*Clock cycle time

Instructions Cycles . Seconds Seconds _
= = CPU time
Program Instruction Clock cycle Program

NRR

Compiler Organization Technology

18

CPU Performance

Another way of looking at CPU time

CPU time = (CPI_1*I 1+ CPI 2*I 2+ ... + CPl_n*I_n)*Clock
cycle time

CPI is now

CPI = CPIl_1*(1_1/Instruction count) + CPI_2*(l_2/Instruction count)
+ ...+ CPl_n*(l_n/Instruction count)

Frequency of |_j =1_j/Instruction count

19

CPU Performance Example

-- Instruction frequencies for a load/store machine

Instruction type Frequency Cycles
Loads 25% 2
Stores 15% 2
Branches 20% 2
ALU 40% 1

-- All conditional branches in this machine use simple tests of equality

with zero
BEQZ, BNEZ
-- Consider adding complex comparisons to conditional branches
-- 25% of branches can use complex scheme--> no need preceding ALU instruction
-- The CPU cycle time of original machine is 10% faster
-- Will this increase CPU performance?

20

CPU Performance Example

« Old CPU performance
* CPlgyg =0.25*2+0.15*2+02*2+0.4*1=16

— CPU timeg|q = 1.6*ICo|g*CCTp|g

« New CPU Performance
0.25*2 + 0.15*2 + 0.2*2 + (0.4 - 0.25*0.2) *1
* CPly = 1-0.25%0.2 =1.63

- IC =0.95*IC

new old

* CCTneW:]--l * CCT0|d

e CPUtimenew = 1.63%(0.95*IC 41d)*(1.1*CCTo1q)
=1.71*IC 4 *CCT,4

21

Locality of Reference

Fundamental observation about programs

Possible to predict with high accuracy what a program will reference
next based on what it has referenced in the recent past

Temporal locality: recently referenced locations are likely to be
referenced again (e.g. code loops, stack accesses).

Spatial locality: nearby locations reference together (e.g. array access,
code access)

Memory hierarchy used to exploit locality

22

Memory Hierarchy

 Basic principle of hardware design: smaller is faster
— Small memories have less signal propagation delay and decoding
— Small memories can use more power per cell for speed
— Small fast memories cost more
« Use memory hierarchy to cost/performance of computer
— CPU registers

— Cache
— Main memory
: denser, cheaper
— Disk memory p
CPU
Registerg* » Cache | »| Memory | > Disk
—

smaller, faster

MIPS

An indirect measure of performance

Instruction count _ _Instr. Count __ clock rate

— million instr/sec "~ Execution time*10 ° #cycles*sec/cycle*10° ~ CPI*10°

— Execution time= instruction count / MIPS/ 106

Problems with MIPS
— Difficult to compare different ISA
— No indication of program or program input
— MIPS can vary inversely to performance (?)

Native MIPS

24

Megaflops

_ #of floating point operations in program
MFLOPS = Execution time * 1,000,000

Does not measure integer performance

Assumes that same number and type of operations are
executed on all machines

Changes with mixture of fast and slow operations (type of
float pt. operations)

A function of instruction mix (% of float pt. operations)

25

Figure 1.15 This 300 mm wafer contains 280 full Sandy Bridge dies, each 20.7 by 10.5 mm in a 32 nm process. (Sandy
Bridge is Intel's successor to Nehalem used in the Core i7.) At 216 mm2, the formula for dies per wafer estimates 282.
(Courtesy Intel.)

Copyright © 2011, Elsevier Inc. All nights Reserved.
26

Figure 1.13 Photograph of an Intel Core i7 microprocessor die, which is evaluated in Chapters 2 through 5. The
dimensions are 18.9 mm by 13.6 mm (257 mm2) in a 45 nm process. (Courtesy Intel.)

Copyright © 2011. Elsevier Inc. All nights Reserved.

27

Die Floorplan

Memory controller _ ___---—7

- e ——
- e

Cug-of-
oroer
achaduling
&
Instruaction
commil

units

Execution

Instniction
dacode,
reqistar
renaming,
&
mbcrosode

Memaory
nrdering &
execution

L1
data
cache

M M
[[
5 s
s Core Core Core Core ¢
1o e o

e u

m e

ou

r e

¥
E Shared L3 T, T | g
| cache - T

Copvright © 2011, Elsevier Inc. All rights Reserved.

L1 inst
cache
& inat
latch

pra-

Branzh

diction

Virtual
memony

L2 cache
&

infermupt
2ErvVicing

Figure 1.14 Floorplan of Core i7 die in Figure 1.13 on left with close-up of floorplan of second core on right.

