
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Chapter 1

Instructor: Josep Torrellas

CS433

2

Course Goals

 • Introduce you to design principles, analysis techniques and design

options in computer architecture

– Instruction set design

– Memory-hierarchy design

– Pipelining

– I/O

• The use of cost/performance as a basis for making decisions about

computer architecture

• Computer architecture is exciting

• Get you to ask interesting questions about computer architecture

3

Background

• Assume you have taken:

– A basic computer organization course

– A logic design course

– Assembly language programming

• Assume that you know

– What an instruction set looks like

– How to program in C

4

TLB

Main Memory

Integer

datapath

Registers

Control

 unit

Registers

 FP

datapath

Registers

 I/O system

Disks

Graphics Display

Network

CPU

Cache

Memory system

The Parts of a Computer

5

Why Study Computer Architecture?

6

Performance?

 • What do we mean when we say computer A is faster than computer B

• Response time

– Time from start to completion of an event

– Execution time

– Latency

• Throughput

– Amount of work done per unit time

– Bandwidth

7

Performance

• Program execution time is the measure of performance (seconds/program)

• Definition of execution time

– Wall clock time, elapsed time as seen by user includes everything (disk,

OS overhead, competition with other jobs).

– CPU time: time CPU computing on your program, excluding I/O wait time

• 1. User CPU time

• 2. System CPU time

• System Performance: elapsed time of an unloaded system

• CPU Performance: user CPU time

– 90.7s: user CPU time

– 12.9s: system CPU time

– 2:39: elapsed time

– 65%: CPU/elapsed

8

Evaluating Performance

• Use real programs

– CAD, text processing, business applications, scientific applications

– input, output, options

– May not know what programs users will run

• Kernels:

– Small key pieces (inner loops) of scientific programs where

program spends most of its time

– e.g. Livermore loops, LINPACK

– Amenable to hand analysis

• Toy Benchmarks

– e.g. Quicksort, Puzzle

– Easy to type, predictable results, may use to check correctness of

machine but not as performance benchmark.

9

Summarizing Performance

• Model a real job mix with a smaller set of representative programs

• Total execution time is the ultimate measure of performance

• Weight benchmarks according to time spent in a real job mix

• How do you summarize performance?

• A single-number performance summary for the programs expressed in

units of time should be directly proportional to (weighted) execution

time

• A single-number performance summary for the programs expressed as

a rate should be inversely proportional to to (weighted) execution time

10

Summarizing Performance

• Given n programs,

– Average of execution time: arithmetic mean

 (1/n)*(Time_1 + Time_2 + … + Time_n)

– If performance is expressed as a rate: the average that tracks

execution time: harmonic mean

n / (1/rate_1 + 1/rate_2 + … +1/rate_n)

where rate_j = f (1/Time_j)

11

Summarizing Performance

• Weighted arithmetic mean

(Time_1*Weight_1 + Time_2*Weight_2 + …+ Time_n*Weight_n)

where Weight_1 + Weight_2 + … + Weight_n = 1,

and Weight_j > 0

• Weighted harmonic mean

1/(Weight_1/Rate_1 + Weight_2/Rate_2 + … + Weight_n/Rate_n)

For example, Rate_j is the MIPS rate of machine j.

12

Geometric Mean for Normalized

Execution Time

• Normalize execution time of a program j to the execution time in a

reference machine

==> Execution time ratio_j

• Geometric mean:

n th root of {(Execution time ratio_1)*…*(Execution time ratio_n)}

13

Make the Common Case Fast

• Very important, sort of obvious but often overlooked

• Common case is made slower to make a less common case faster

• The frequent case is often simpler and can be done faster (e.g. addition

rarely overflows)

• Not following this principle can increase design time.

• Complex problems should be handled in software

• Hardware should provide fast primitives, not complete solutions

14

Amdahl’s Law

• Performance gain from improvement of some portion of a computer

• Original Observation: Speedup from parallel processing is limited by the

fraction that cannot be parallelized.

• In general,

Speedup = ET without enh / ET with enh = ET_old / ET_new

where enh => enhancement

ET_new = ET_old * {(1-fraction_enh) + fraction_enh / Speedup_enh}

Speedup = 1 / {(1-fraction_enh) + fraction_enh / Speedup_enh}

15

Application of Amdahl’s Law

• Parallel application that is 90% parallel, what is the speedup for

application on 10, 100 and 1000 processors.

– 10% I/O and initialization: s

– 90% parallel: p

– S_p = 1/(s + p/P) = 1/(0.1 + 0.9/P)

– S_10 = 1/(0.1 + 0.9/10) = 1/0.19 = 5.26

– S_100 = 1/(0.1 + 0.9/100) = 1/0.109 = 9.1

– S_1000 = 9.9

– Diminishing returns in performance

16

Increasing Parallelism

• 9% I/O initialization: s

• 91% parallel: p

– S_p = 1/(s + p/P) = 1/(0.09 + 0.91/P)

– S_100 = 1/(0.09 + 0.91/100) = 1/0.099 = 10.09

17

Using Amdahl’s Law

• Making cost performance trade-offs

– Application spends 50% time in CPU and 50% of time waiting for I/O

– Cost of CPU = 1/3, cost of I/O = 2/3

– New CPU increases CPU performance 5 times and CPU cost 5 times

– Is using a new CPU a good idea from a cost/performance standpoint.

– Speedup = 1/ (0.5 + 0.5/5) = 1/0.6 = 1.67

– Cost increase = 2/3*1 + 1/3*5 = 2.33

– Spend resources proportionately to where time is spent

– How much should we increase CPU speed for equal speedup and cost

increase?

18

CPU Performance

CPU time = CPU clock cycles per program * Clock cycle time

CPI =
CPU clock cycles per program

Instruction count

CPU time = Instruction count*CPI*Clock cycle time

Instructions Cycles Seconds Seconds

Program Instruction Clock cycle Program
* * = = CPU time

Compiler ISA Organization Technology

19

CPU Performance

• Another way of looking at CPU time

CPU time = (CPI_1*I_1 + CPI_2*I_2 + … + CPI_n*I_n)*Clock

cycle time

• CPI is now

CPI = CPI_1*(I_1/Instruction count) + CPI_2*(I_2/Instruction count)

+ … + CPI_n*(I_n/Instruction count)

Frequency of I_j = I_j/Instruction count

20

Stores 15% 2

CPU Performance Example

 -- Instruction frequencies for a load/store machine

Instruction type Frequency Cycles

Loads 25% 2

Branches 20% 2

ALU 40% 1

-- All conditional branches in this machine use simple tests of equality

 with zero

 BEQZ, BNEZ

-- Consider adding complex comparisons to conditional branches

-- 25% of branches can use complex scheme--> no need preceding ALU instruction

-- The CPU cycle time of original machine is 10% faster

-- Will this increase CPU performance?

21

CPU Performance Example

• Old CPU performance

• CPI =0.25 * 2 + 0.15 * 2 + 0.2 * 2 + 0.4 * 1 =1.6

•

– CPU time = 1.6*IC *CCT

• New CPU Performance

• CPI = =1.63

• IC = 0.95 * IC

• CCT =1.1 * CCT

• CPU time = 1.63*(0.95*IC)*(1.1*CCT)

 = 1.71*IC *CCT

old

old old old

0.25*2 + 0.15*2 + 0.2*2 + (0.4 - 0.25*0.2) *1

 1 - 0.25 * 0.2 new

 new old

new old

 new old old

old old

22

Locality of Reference

• Fundamental observation about programs

• Possible to predict with high accuracy what a program will reference

next based on what it has referenced in the recent past

• Temporal locality: recently referenced locations are likely to be

referenced again (e.g. code loops, stack accesses).

• Spatial locality: nearby locations reference together (e.g. array access,

code access)

• Memory hierarchy used to exploit locality

23

Memory Hierarchy

• Basic principle of hardware design: smaller is faster

– Small memories have less signal propagation delay and decoding

– Small memories can use more power per cell for speed

– Small fast memories cost more

• Use memory hierarchy to cost/performance of computer

– CPU registers

– Cache

– Main memory

– Disk memory

Registers Cache Memory Disk

CPU

denser, cheaper

smaller, faster

24

MIPS

• An indirect measure of performance

– million instr/sec = 6 = 6 = 6

– Execution time= instruction count / MIPS/ 10^6

• Problems with MIPS

– Difficult to compare different ISA

– No indication of program or program input

– MIPS can vary inversely to performance (?)

• Native MIPS

Instruction count Instr. Count clock rate

Execution time*10 #cycles*sec/cycle*10 CPI*10

25

Megaflops

• MFLOPS =

• Does not measure integer performance

• Assumes that same number and type of operations are

executed on all machines

• Changes with mixture of fast and slow operations (type of

float pt. operations)

• A function of instruction mix (% of float pt. operations)

of floating point operations in program

Execution time * 1,000,000

26

Wafer

27

Die

28

Die Floorplan

