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Pipelining 

•  Multiple instructions are overlapped in execution 
•  Each is in a different stage 
•  Each stage is called “pipe stage or segment” 
•  Throughput: # inst completed/cycle 
•  Each step takes a machine cycle 
•  Want to balance the work in each stage 
•  Ideally: 

 Time per instruction = Time per inst in a non-pipelined 
      # pipe stages 



3 Figure C.21 
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Implementation of RISC Instructions 

1. Instruction Fetch cycle (IF) 
 IR ← Mem[PC]   ; IR holds the instruction 
 NPC ← PC+4 

 
2. Instruction decode/register fetch cycle (ID) 

 A ← Regs[rs]   ; decode the instruction 
 B ← Regs[rt]  ; in the meantime 
 Imm ← sign-extend imm field of IR   ;Regs A, B, Imm 
 ; ok if some of this is not needed 
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3. Execution /Effective address cycle (EX) 
•  memory ref: ALU output ← A+Imm 
•  Reg-Reg (ALU op): ALU output ← A op B 
•  Reg-Immed (ALU op): ALU output ← A op Imm 
•  Branch: ALU output ← NPC+ (Imm << 2)   
                                                                   ;address of target 

          cond ← (A op O)          ; op = equal,  
                                 = not equal 

 
 

/* note: no instructions need to do 2 of these operations */ 
/* note: Imm has word count for branches; need to shift by 2 

to get bytes to add to PC */ 
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4. Memory Access/Branch Completion Cycle (MEM) 
 /* only for LD,ST,BR */ 

•  Memory access: 
 LMD ← Mem[ALU output]   ;for loads. Store data in 
            ; load mem data register 
 Mem[ALU output] ← B          ; for stores 

 
•  Branch 

 if (cond) 
  PC ← ALU output 
 else 
  PC ← NPC 
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5. Write-back cycle (WB) 
•  Reg-Reg ALU instr: Regs[rd] ← ALU output 
•  Reg-Imm ALU instr: Regs[rt] ← ALU output 
•  Load Instruction: Regs[rt] ← LMD 

Now we will try to pipeline it 
We need: At the end of each cycle, the data is stored in some 

registers (PC,LMD,Imm,A,B,…). This allows other 
instructions to execute too. 

 
•  Branches → 4 cycles 

 Rest of ins → 5 cycles 



8 Figure C.1and C.2 



9 Figure C.22 and C.23 
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Why does it work? 

•  Use separate I and D caches 
•  Register file can be read/written in 0.5 cycles 
•  PC: incremented in IF 

  if branch taken, in EX, add PC+ (Imm << 2) 
•  Cannot keep any state in IR → need to move it to another 

register every cycle → see picture 
 These registers IF/ID, ID/EX, EX/MEM, MEM/WB 
subsume the temp ones 

  e.g. Destination Reg in a LD 
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Control of the pipeline: set the control of the 4 MUXES 
(Figure C.22) 
–  ALU stage MUXES: set depending on instruction type 

which is set by ID/EX. IR 
•  top one: branch or not 
•  bottom one: reg-reg ALU or other 

–  MUX in IF:  
  chooses between PC+4 and EX/MEM. ALUOutput 
  controlled by EX/MEM.cond 

–  MUX in WB: 
   controlled by whether inst. is a LD or an  

  ALU op  
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•  A final MUX shown in WB: chooses the field in IR that 
determines what reg to use to store the result 
–  in reg-reg ALU  MEM/WB. IR16…20     
–  in reg-imm ALU and LD  MEM/WB. IR11…15  

 

Performance Issues 
                                                                     extra regs 

Pipelining: → each instruction is slower  
            time of 

           slowest pipe stage 
    → but throughput is higher 

(rd) 
(rt) 
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Example 

Unpipelined: 10ns cycle time 
   4 cycles for ALU (40%), branch (20%) 
   5 cycles for mem (40%) 

pipelining: adds 1 ns to clock 
speedup in execution rate? 
Unpipelined: avg inst = clock * avg CPI = 10*((40%+20%)*4 + 

40%*5) = 44 ns 
pipelined = 11 ns 

 Speedup= 44/11 = 4                       
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Pipeline Hazards 
Situations that prevent the next instruction from executing its 

designated clock cycle 
 → Structural: resource conflicts e.g. not enough multipliers 
 → Data: instruction depends on the result of a previous one. 

e.g. ADD R1, R2, R3 
         ADD R4, R5, R1 

→ Control: results from instructions that change the PC. e.g. 
BEQ R1, label 

    ADD R7, R6, R7 
As a result, the pipeline may have to stall  
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Note : In Hazards (and cache misses) :  instruction before hazard continue 

                                                                    after hazard stall 

            

Speed up From    =       
Piplining 

Avg. inst. Time unpipelined   =  CPI Unpipelined * Clock cycle unpipelined 
 
 Avg. inst. Time pipelined          CPI Pipelined    * Clock cycle pipelined 

CPI           =     Ideal CPI  +  Pipeline stall clock cycles per inst. 

                     

Speedup   =                        Pipeline Depth 

1+ Pipeline stall cycles per inst. 

pip 
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Structural Hazards 

•  Some Combination of inst. Cannot be accomodated because of resource 
conflicts 

•  Usually because some functional unit is not pipelined two instructions 
using it cannot proceed back to back 

•  Some resource has not been replicated enough    
   Eg  1 register file port    
                                    Combined I,D memory   

Result  : Pipeline stall, like if we had inserted a bubble.   
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    Figure C.4 and Figure C.5 
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Example : Machine 1 separate I,D 
                  Machine 2: Unified I,D clock rate 1.05 higher  

             40% of instructions are data Accesses   
                  Which is faster? 
 

(Avg. inst. time)  =  CPI  *  (Clock cycle time)  =  1  *   (Clock cycle time ) 
 
(Avg. inst. time   =  CPI  *                                  =  (1 +0.4*1) *     
 
                            = 1.3 * ( Clock Cycle time) 
•  Why allow structural hazards ? 

–  Reduce cost 
–  speed up FUnit 

Clock Cycle Time 

           1.05 

Clock Cycle Time 

           1.05 
2 

1

1 
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Data Hazards 
Occurs because pipelining changes the order of read/write accesses to 
operands 
 1 ADD   R1, R2, R3 
2 SUB    R4,R5,R1 
3 AND   R6,R1,R7 
4 OR      R8,R1,R9 
5 XOR   R10,R1,R11 
 
Left to their own devices all these instructions produce wrong results 
 
To fix problem 
4   Split register access W,R 
2,3  Forwarding (bypassing or short circuiting). 
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Figure C.6 
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Figure C.7 
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Forwarding 
•  ALU result from the EX/Mem reg is fed back to the ALU input latches 

•  If forwarding hardware detects the dependency , it selects the forwarded 
value instead of value from the reg. 

•  Do this also between instructions that are 1 instruction apart 

•  Need forwarding path to the data memory input 
       ADD R1 , R2 , R3 

   LW   R4 , 0(R1) 
     SW  12(R1) , R4 
 
•  Overall : No Cycle  lost (for now)   --- One exception… 
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Figure C.8 
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Classifying Data Hazards 
•  RAW(Read after Write)  : i + 1 tries to read before i writes 

        ADD  R1 
        ADD  R7 , R1  

•  WAW(Write after Write) : i + 1 tries to write before i writes   
–  Not Possible in MIPS 
–  Could happen if ALU instr. Wrote in the MEM stage and data mem 

 accesses took 2 pipe stages 
                  LW  R1,0(R2)    IF ID EX MEM1 MEM2 WB 
                  ADD R1,R2,R3      IF  ID  EX       WB 

   
•  WAR( Write after Read) : i + 1 tries to write before i reads 

–  Not possible in MIPS because inst. read first ID, write in WB 
–  Occurs when some inst write early     
                                            read  late  (for example autoincrement addressing) 

SW     R1,0(R2)+   IF ID EX MEM1 MEM2 AU WB 
ADD  R2, R3, R4       IF  ID  EX       WB 

•  RAR( Read after Read)  : No Hazard 

autoincrement 
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Data Hazards that require stall - loads 
 

  LW    R1 , O(R2) 
                SUB  R4 , R1 , R5 
    AND R6 , R1 , R7 
                 OR    R8, R1 , R9   
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Figure C.9 and C.10 
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How to handle these hazards 
1    Add hardware(pipeline interlock) to detect hazard and stall then pipeline until 

the hazard is cleared 
–  The  CPI of the SUB instruction increases by 1 
 

2    Pipeline scheduling by the compiler : avoid putting a load followed by 
immediate use of the load register 

     a = b + c                lw   Rb  , b 
     d = e - f                 lw   Rc   , c 
                                   lw   Re  , e 
                                   add Ra   , Rb  , Rc   
                                   lw   Rf  , f 
                                   sw  a , Ra 
                                   sub Rd   , Re   , Rf  

                     sw  d , Rd  
–  Pipeline schedule can increase the reg. count required 
–  It is easier if scheduling happens within Basic Blocks: A basic block is a 

straight-line code sequence with no transfers in or out, except at the 
beginning or end 
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Control Issues 

•  Moving an instruction from ID->EX: issue it 

•  For MIPS , all data hazards can be detected in ID.  
     If hazard exists -> don’t issue 

•  ID also determines what forwarding will be necessary 

•  When hazard  is detected : -> insert a pipeline stall and prevent  
                           the instructions in IF or ID from advancing 

 
See Figure C.25 
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  This requires : 
 

 1.  Change the control portion of ID/EX to all zeros -> NOP (does     
 nothing) 

2. Recirculate the contents of the IF/ID reg to hold the stalled 
instruction 

 
For forwarding  it is similar : 
Compare  EX/MEM.IR[rd] ==ID/EX.IR[rs] 
                       

      Figure C.26 
 
It is also necessary to enlarge the data path + add multiplexors  
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Figure C.27 
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Control Hazards: Branches 
•  When a branch is executed , it may or may not be taken 

•  If taken , the PC is not changed (usually) until  
 the end of EX-> end of address calculation 

 
•  Easiest way : Stall pipeline as soon as the branch is detected until the 

EX 

•  Need to repeat the IF of the instruction following the branch ( not 
necessary if not taken) 

•  Overall two cycles lost 
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Reducing Branch Stalls 

•  Do, as soon as possible : 
–   Find out whether or not the BR is taken 
–     Find out the target addr. 

•  How ? 

–  Complete the testing for zero or not zero ( BEQZ, QNEQZ) 
 by the end of ID cycle ( instead of EX) 

-> move the zero test to ID 
–  Compute the target in the ID (instead of EX)  

 -> requires extra adder 
 -> therefore : only 1 clock cycle stall ( Branch delay) 
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     Figure C.11 and C.28 
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Branch Behavior of pgms. 

•  Conditionals dominate 

•  Forward dominate 

•  67% of conditional br. are taken! 

•  Usually, backward branches are taken more often than 
forward ones (loops)  



35 

Reducing Branch Penalties (Static Methods) 
Static methods : compiler decides 
1. Freeze  pipeline until branch is resolved => simple (see 

prev. figure) 
 
2. Predict branch not taken : 

  -> continue as if nothing happens 
  -> following instr.  do not change state until BR is 
resolved 

  -> if fail : flush pipeline 
 
3. Predict taken 

  -> after the decode  +  target address computed  -> 
                   fetch from target ( no advantage in MIPS ) 
 



Predict non-taken 
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Figure C.12 

Copyright © 2011, Elsevier Inc. All rights Reserved. 
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   4.  Delayed branch 
 -> the instruction(s) in the branch delay slot(s) 

          following the br will be executed irrespective  
      of the outcome of the branch. 
 -> MIPS  1 delay slot. 
 -> job of compiler: successor instruction(s) are valid and 
useful. 
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Figure C.13 

Copyright © 2011, Elsevier Inc. All rights Reserved. 
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    I1 
 BR R1   L 
 ADD R1 
 ADD R2 
 
 
L: SUB R7 
   SUB R8 

  BR R1   L 
  I1 
  ADD R1 
  ADD R2 
 
 
L: SUB R7 
  SUB R8 

  I1 
  BR R1   L 
  ADD R1 
  ADD R2 
 
 
L: SUB R7 
  SUB R8 

  I1 
  BR R1   L 
  NOP 
  ADD R1 
  ADD R2 
 
 
L: SUB R7 
  SUB R8 

  I1 
  BR R1   L2 
  SUB R7 
  ADD R1 
  ADD R2 
 
 
L: SUB R7 
L2: SUB R8 
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Figure C.14 
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Delayed Branches ( more) 

•  Cannot put a branch in a delay slot 
–  Since longer branch delays in newer machines  

-> schemes for branch prediction     (R4000 = 3 cycles) 

•  With 1 delay slot : need to have an extra PC 
–  /* in case an interrupt occurs in the instruction  

  in the branch delay slot    */ 
•  Impact on the ideal CPI : 
 

pipeline speedup =  
 

                Pipeline depth  

1 + branch freq. *  branch penalty 
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Example : R4000 

      Penalty               Penalty          Penalty  
Branch Scheme     unconditional      untaken         taken  
 Stall pipeline                 2                            3                    3 
 predict taken                 2                            3                     3 
 predict untaken             2                            0                     3 
 
if frequency  ->              4%                        10%                 6% 
 
CPI         =   1 +  0.04*2  +  0.10 * 3  +  0.06*3  = 1.56 stall 
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How to Statically predict Branches 

1   Examination of program behavior 
–  Since most branches taken → always predict taken 
–  Since bck branches taken → predict bck taken , fwd not taken 

2  Use profiles of previous runs 
    Why ?      Branches are usually taken or not-taken 
        bimodal distibution 
Overall : CPI from pipelining for Integer spec 92 programs 
   CPI      = 1+ 0.06       +    0.05           =    1.11 

   
pip 

from branch
  

from load   
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Handling Multicycle Operations 
•  Floating point operations usually take several EX cycles 
•  There are several floating point functional units 
•  Example : Assume we have 4 separate FU 

–  Integer unit : Ld,St, integer ALU , Br 
–  FL Pt and integer MPY 
–  Fl Pt adder 
–  Fl Pt and integer div 

assumptions :  1 Not pipelined  
   2 If  instruction i cannot proceed to EX, 
       entire pipeline behind stalls   
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Figure C.33 
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Figure C.35 
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Resulting Pipeline 
For independent instructions 
MULTD     IF  ID  M1  M2  M3  M4      M5       M6       M7  MEM   WB 
ADDD              IF  ID   A1  A2    A3       A4      MEM   WB 
LD                          IF    ID  EX  MEM   WB   
SD                                  IF   ID    EX      MEM   WB 
•  Obviously , for the pipelined FU , need extra regs  
    Problems 
1.  Divide FU is not pipelined → may suffer structural hazards 
2. Because instructions have varying  running times, we  
     may try several WB in same cycle 
3. Because instructions do not reach WB in order → WAW possible  
    WAR not possible : reg always reads in ID 
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  4.  Instructions can complete out of order → pbms w/exceptions 
5. Long latency operations → frequent RAW stalls 
       

   MULTD   IF   ID  M1 M2  M3  M4  M5  M6 M7  MEM WB 
        F0,F4,F6 
        ADD               IF  ID   --     --     --     --     --   --      A1     A2  A3 A4 MEM 
        F2,F0,F8 
        SD,F2,6(R2)        IF    --      --     --    --     --    --     ID    EX   --    --    MEM 
   

  MULTD   IF   ID  M1 M2  M3  M4  M5  M6 M7  MEM WB 
        F0,F4,F6 
                               IF 

         IF 
        ADD F2,F4,F6            IF    ID   A1   A2  A3  A4   MEM  WB 
                Only 1 write port 

                 in Reg. File   
  

{5

{2
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How to Prevent Multiple WB? 
•  Each instruction, in the ID stage, tracks the current use of 

the write port of the register file. If scheduled to use when 
the instruction will want to use it: Stall 

•  Stall the conflicting instructions when they try to enter the 
MEM stage. Heuristic: choose the instruction that came 
from the unit with the longest latency 
 + No need to try to try to figure out the problem at ID time 
 -  Instructions can now stall before getting to MEM, which 
complicates the pipeline 
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How to Handle WAW Hazards? 

ADDD F2,F4,F6      IF  ID A1 A2  A3  A4   MEM WB 
XOR                               IF  ID 
LD F2, 0(R2)                       IF   ID EX MEM WB 

•  Only if the result of ADDD is not used (compiler generated) 
•  Strategies: 

1.  Delay issue of LD until ADDD enters MEM  /*it is known at ID time */ 
2.  Detect the hazard and prevent ADDD from writing. LD can be issued 

right away  /*again: Known at ID time */ 
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Summary of Multicycle Operations 

Do at ID time: 
•  1. Check for structural hazard: wait until FU not busy and make sure 

that register write port will ba available at WB 
 
•  2. Check for RAW hazards: wait until the src regs are not listed as 

pending destinations 

IF ID A1 A2 A3 A4 MEM WB 
     IF  ID  -    -     -    EX 

•  3. Check for WAW hazards: Check if any previous instruction has the 
same register destination as present one. If so, stall until that instr enters 
the MEM stage 
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Dealing with exceptions 
•  Overlapping of instructions in a pipeline: makes it hard to 

deal with exceptions 
•  Exceptions: 

–  Normal execution order of instructions is changed 
–  Include what is sometimes referred to as interrupt and fault 

•  Examples of exceptions: 
I/O device request, invoking an OS service from a user program, 

tracing instruction execution, breakpoint, integer arithmetic 
overflow and underflow, FP arithmetic anomaly, page fault, 
misaligned memory access, memory protection violation, using an 
undefined instruction, hardware malfunction, power failure 



53 

Figure C.30 
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Classification 
•  Synchronous vs asynchronous:  

–  Synchronous: event occurs at the same place every time 
–  Asynchronous: caused by devices external to processor and 

memory; can usually be handled after the completion of the current 
instruction (easier to handle) 

•  User requested vs user coerced: 
–  Requested: user directly asks for it; can always be handled after the 

instruction has completed 
–  Coerced: caused by some hardware event that is not under the 

control of the user program 

•  User maskable vs unmaskable: 
–  Maskable: a user task can mask it 
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Classification 
•  Within vs between instructions: the event prevents 

instruction completion by happening in the middle of 
execution or it is recognized between instructions: 
–  Within: usually synchronous; harder to implement since instruction 

must be stopped and restarted; exceptions that are within and 
asynchronous are usually catastrophic: power failure 

•  Resume vs terminate 
–  Terminate: program terminates. Easier to implement since no need to 

restart the execution 

See Figure C.31 
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Difficulty 
•  Implementing interrupts occurring within instructions that 

are resuming is difficult 
•  How to do it? Invoke another program that 

–  Save the state of the executing program 
–  Correct the cause of the exception 
–  Restore the state of the program before the I that caused exception 
–  Retry the instruction 

•  Process invisible to program 
•  If pipeline allows machine to save state, handle exception, 

and restart without affecting the execution of program: 
restartable machine or pipeline 

•  All machines today are restartable (at least for int pipeline) 
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Stopping and restarting execution 
•  Focus on exceptions that 1) occur within instruc and 2) are 

restartable 
•  Example: page fault from a data fetch 

–  Occurs when one instruction enters the MEM stage 
–  Other instructions already in the pipeline 
–  OS must be invoked, save the state in the pipeline, move page to 

memory 
–  Restore the pipeline as it was and continue 
–  If the instruction was a branch: have to reevaluate the condition 



58 

Saving the pipeline state safely 
•  Force a OS instruction into the pipeline on the next IF (the 

entry point of an OS trap) 
•  Fill with zeros the latches for the instruction that caused the 

exception  and successors. This prevents any writes and, 
therefore, changing any state 

•  Save the PC of the offending instruction, so that we can 
resume 

•  Note: suppose we have a 1 branch delay slot and the 
exception happens in the instruction in the slot? In general, 
need to save as many PCs as delay slots + 1 
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Returning machine from exception 
•  Last instruction in the OS trap handler is a special instruction 

that returns the PC of the offending instruction 
•  Therefore, the next instruction to execute is the one causing 

the exception 

•  A pipeline supports precise exceptions if: instructions before 
the faulting one can be completed and those after (and 
including) it, can be restarted from scratch 
–  Easier if the faulting instruction has not updated state (most cases) 
–  Harder if it has (e.g. in some FP ops). In this case, the hardware has 

to retrieve the old values 

•  Programmers prefer precise interrupts: easy in int pipeline 
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Exceptions in Integer MIPS 
•  IF: page fault on I-fetch, misaligned memory access, 

memory protection violation 
•  ID: undefined/illegal opcode 
•  EX: arithmetic exception 
•  MEM: page fault on D-fetch, misaligned memory access, 

memory protection violation 
•  WB: none 
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Issues 
•  Two exceptions may occur at the same time:  
       LD:  in the MEM 
      ADD:  in the EX 
      What to do? Repair one and restart; dectect and repair the       

second one 
•  Two exceptions may appear out of order: 
     LD: in the MEM 
     ADD: in the IF 
     What to do? Hardware posts all exceptions caused by an 

instruction in a status vector assoc with the instruction. The 
vector is carried down the pipeline with the instr.  
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Issues (cont) 
•  Once an exception indication is set in the vector, the 

instruction cannot update state (regs or mem) 
•  When instr is about to leave MEM, its  vector is checked 
•  If any bit set, process the exception (if several in the vector, 

process the one from the earliest stage in the pipeline) 
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Instruction Set Complications 
•  Precise exceptions easy in MIPS: no instruction writes until 

the end of the pipe (end of MEM or WB) 
•  Other ISAs have instructions that change the state in the 

middle:  
–  Autoincrement updates a reg in the middle, and then it can 

suffer an exception 
•  In that case, need extra hardware support to undo the change, to 

reset the state to before the instruction (or the exception will be 
imprecise) 

•  Alternatively, do not let any update until the instruction commits 
(it is guaranteed to complete), but it may be complex 

–  Instructions that update memory during execution (string 
copy) 

•  State of partially completed instruction always in registers 
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Exceptions with Long-Running Instr 
                     DIVF    F0,F2,F4 
                     ADDF  F10,F10,F8 
                     SUBF   F12,F12, F14 
 
•  Out of order completion: ADDF, SUBF finish before DIVF 
•  Suppose that ADDF completes and then DIVF has an EX 

exception 
•  Used possible solutions: 

–  1. Ignore the problem and use imprecise interrupts. Need to re-
execute the code in a much slower “precise exception” mode. This 
mode does not allow as much overlap à only 1 FP active at a time  
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Possible solutions (cont) 
•  2. Buffer the result of the FP op until all the FP operations 

that were issued before are complete 
–  Expensive buffering of much state 
–  Buffered results may need to be read by subsequent instr 
–  Used in the form of history buffer and future file 

•  3. Keep enough information around so that trap-handling 
routines can create a precise interrupt: software finishes all 
the instructions that precede the one that finished (ADDF) 
–  Quite complicated 
–  Simplified if we have only 2 FPs executing at a time 
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Possible solutions (Cont) 
•  4. Allow instruction issue (entering the EX stage) only 

when we know that all the previous instr issued will finish 
without exceptions 
–  Guarantees precise interrupts 
–  It implies often stalling before issuing 
–  For it to work: the FP pipeline must decide soon (in 2-3 EX cycles) 

if there will be an exception 


