
Copyright Josep Torrellas 1999, 2001, 2002, 2013 1

Appendix C

Instructor: Josep Torrellas
CS433

2

Pipelining

•  Multiple instructions are overlapped in execution
•  Each is in a different stage
•  Each stage is called “pipe stage or segment”
•  Throughput: # inst completed/cycle
•  Each step takes a machine cycle
•  Want to balance the work in each stage
•  Ideally:

 Time per instruction = Time per inst in a non-pipelined
 # pipe stages

3 Figure C.21

4

Implementation of RISC Instructions

1. Instruction Fetch cycle (IF)
 IR ← Mem[PC] ; IR holds the instruction
 NPC ← PC+4

2. Instruction decode/register fetch cycle (ID)

 A ← Regs[rs] ; decode the instruction
 B ← Regs[rt] ; in the meantime
 Imm ← sign-extend imm field of IR ;Regs A, B, Imm
 ; ok if some of this is not needed

5

3. Execution /Effective address cycle (EX)
•  memory ref: ALU output ← A+Imm
•  Reg-Reg (ALU op): ALU output ← A op B
•  Reg-Immed (ALU op): ALU output ← A op Imm
•  Branch: ALU output ← NPC+ (Imm << 2)
 ;address of target

 cond ← (A op O) ; op = equal,
 = not equal

/* note: no instructions need to do 2 of these operations */
/* note: Imm has word count for branches; need to shift by 2

to get bytes to add to PC */

6

4. Memory Access/Branch Completion Cycle (MEM)
 /* only for LD,ST,BR */

•  Memory access:
 LMD ← Mem[ALU output] ;for loads. Store data in
 ; load mem data register
 Mem[ALU output] ← B ; for stores

•  Branch

 if (cond)
 PC ← ALU output
 else
 PC ← NPC

7

5. Write-back cycle (WB)
•  Reg-Reg ALU instr: Regs[rd] ← ALU output
•  Reg-Imm ALU instr: Regs[rt] ← ALU output
•  Load Instruction: Regs[rt] ← LMD

Now we will try to pipeline it
We need: At the end of each cycle, the data is stored in some

registers (PC,LMD,Imm,A,B,…). This allows other
instructions to execute too.

•  Branches → 4 cycles

 Rest of ins → 5 cycles

8 Figure C.1and C.2

9 Figure C.22 and C.23

10

Why does it work?

•  Use separate I and D caches
•  Register file can be read/written in 0.5 cycles
•  PC: incremented in IF

 if branch taken, in EX, add PC+ (Imm << 2)
•  Cannot keep any state in IR → need to move it to another

register every cycle → see picture
 These registers IF/ID, ID/EX, EX/MEM, MEM/WB
subsume the temp ones

 e.g. Destination Reg in a LD

11

Control of the pipeline: set the control of the 4 MUXES
(Figure C.22)
–  ALU stage MUXES: set depending on instruction type

which is set by ID/EX. IR
•  top one: branch or not
•  bottom one: reg-reg ALU or other

–  MUX in IF:
 chooses between PC+4 and EX/MEM. ALUOutput
 controlled by EX/MEM.cond

–  MUX in WB:
 controlled by whether inst. is a LD or an

 ALU op

12

•  A final MUX shown in WB: chooses the field in IR that
determines what reg to use to store the result
–  in reg-reg ALU MEM/WB. IR16…20
–  in reg-imm ALU and LD MEM/WB. IR11…15

Performance Issues
 extra regs

Pipelining: → each instruction is slower
 time of

 slowest pipe stage
 → but throughput is higher

(rd)
(rt)

13

Example

Unpipelined: 10ns cycle time
 4 cycles for ALU (40%), branch (20%)
 5 cycles for mem (40%)

pipelining: adds 1 ns to clock
speedup in execution rate?
Unpipelined: avg inst = clock * avg CPI = 10*((40%+20%)*4 +

40%*5) = 44 ns
pipelined = 11 ns

 Speedup= 44/11 = 4

14

Pipeline Hazards
Situations that prevent the next instruction from executing its

designated clock cycle
 → Structural: resource conflicts e.g. not enough multipliers
 → Data: instruction depends on the result of a previous one.

e.g. ADD R1, R2, R3
 ADD R4, R5, R1

→ Control: results from instructions that change the PC. e.g.
BEQ R1, label

 ADD R7, R6, R7
As a result, the pipeline may have to stall

15

Note : In Hazards (and cache misses) : instruction before hazard continue

 after hazard stall

Speed up From =
Piplining

Avg. inst. Time unpipelined = CPI Unpipelined * Clock cycle unpipelined

 Avg. inst. Time pipelined CPI Pipelined * Clock cycle pipelined

CPI = Ideal CPI + Pipeline stall clock cycles per inst.

Speedup = Pipeline Depth

1+ Pipeline stall cycles per inst.

pip

16

Structural Hazards

•  Some Combination of inst. Cannot be accomodated because of resource
conflicts

•  Usually because some functional unit is not pipelined two instructions
using it cannot proceed back to back

•  Some resource has not been replicated enough
 Eg 1 register file port
 Combined I,D memory

Result : Pipeline stall, like if we had inserted a bubble.

17

 Figure C.4 and Figure C.5

18

Example : Machine 1 separate I,D
 Machine 2: Unified I,D clock rate 1.05 higher

 40% of instructions are data Accesses
 Which is faster?

(Avg. inst. time) = CPI * (Clock cycle time) = 1 * (Clock cycle time)

(Avg. inst. time = CPI * = (1 +0.4*1) *

 = 1.3 * (Clock Cycle time)
•  Why allow structural hazards ?

–  Reduce cost
–  speed up FUnit

Clock Cycle Time

 1.05

Clock Cycle Time

 1.05
2

1

1

19

Data Hazards
Occurs because pipelining changes the order of read/write accesses to
operands
 1 ADD R1, R2, R3
2 SUB R4,R5,R1
3 AND R6,R1,R7
4 OR R8,R1,R9
5 XOR R10,R1,R11

Left to their own devices all these instructions produce wrong results

To fix problem
4 Split register access W,R
2,3 Forwarding (bypassing or short circuiting).

20

Figure C.6

21

Figure C.7

22

Forwarding
•  ALU result from the EX/Mem reg is fed back to the ALU input latches

•  If forwarding hardware detects the dependency , it selects the forwarded
value instead of value from the reg.

•  Do this also between instructions that are 1 instruction apart

•  Need forwarding path to the data memory input
 ADD R1 , R2 , R3

 LW R4 , 0(R1)
 SW 12(R1) , R4

•  Overall : No Cycle lost (for now) --- One exception…

23

Figure C.8

24

Classifying Data Hazards
•  RAW(Read after Write) : i + 1 tries to read before i writes

 ADD R1
 ADD R7 , R1

•  WAW(Write after Write) : i + 1 tries to write before i writes
–  Not Possible in MIPS
–  Could happen if ALU instr. Wrote in the MEM stage and data mem

 accesses took 2 pipe stages
 LW R1,0(R2) IF ID EX MEM1 MEM2 WB
 ADD R1,R2,R3 IF ID EX WB

•  WAR(Write after Read) : i + 1 tries to write before i reads

–  Not possible in MIPS because inst. read first ID, write in WB
–  Occurs when some inst write early
 read late (for example autoincrement addressing)

SW R1,0(R2)+ IF ID EX MEM1 MEM2 AU WB
ADD R2, R3, R4 IF ID EX WB

•  RAR(Read after Read) : No Hazard

autoincrement

25

Data Hazards that require stall - loads

 LW R1 , O(R2)
 SUB R4 , R1 , R5
 AND R6 , R1 , R7
 OR R8, R1 , R9

26

Figure C.9 and C.10

27

How to handle these hazards
1 Add hardware(pipeline interlock) to detect hazard and stall then pipeline until

the hazard is cleared
–  The CPI of the SUB instruction increases by 1

2 Pipeline scheduling by the compiler : avoid putting a load followed by
immediate use of the load register

 a = b + c lw Rb , b
 d = e - f lw Rc , c
 lw Re , e
 add Ra , Rb , Rc
 lw Rf , f
 sw a , Ra
 sub Rd , Re , Rf

 sw d , Rd
–  Pipeline schedule can increase the reg. count required
–  It is easier if scheduling happens within Basic Blocks: A basic block is a

straight-line code sequence with no transfers in or out, except at the
beginning or end

28

Control Issues

•  Moving an instruction from ID->EX: issue it

•  For MIPS , all data hazards can be detected in ID.
 If hazard exists -> don’t issue

•  ID also determines what forwarding will be necessary

•  When hazard is detected : -> insert a pipeline stall and prevent
 the instructions in IF or ID from advancing

See Figure C.25

29

 This requires :

 1. Change the control portion of ID/EX to all zeros -> NOP (does
 nothing)

2. Recirculate the contents of the IF/ID reg to hold the stalled
instruction

For forwarding it is similar :
Compare EX/MEM.IR[rd] ==ID/EX.IR[rs]

 Figure C.26

It is also necessary to enlarge the data path + add multiplexors

30

Figure C.27

31

Control Hazards: Branches
•  When a branch is executed , it may or may not be taken

•  If taken , the PC is not changed (usually) until
 the end of EX-> end of address calculation

•  Easiest way : Stall pipeline as soon as the branch is detected until the

EX

•  Need to repeat the IF of the instruction following the branch (not
necessary if not taken)

•  Overall two cycles lost

32

Reducing Branch Stalls

•  Do, as soon as possible :
–  Find out whether or not the BR is taken
–  Find out the target addr.

•  How ?

–  Complete the testing for zero or not zero (BEQZ, QNEQZ)
 by the end of ID cycle (instead of EX)

-> move the zero test to ID
–  Compute the target in the ID (instead of EX)

 -> requires extra adder
 -> therefore : only 1 clock cycle stall (Branch delay)

33

 Figure C.11 and C.28

34

Branch Behavior of pgms.

•  Conditionals dominate

•  Forward dominate

•  67% of conditional br. are taken!

•  Usually, backward branches are taken more often than
forward ones (loops)

35

Reducing Branch Penalties (Static Methods)
Static methods : compiler decides
1. Freeze pipeline until branch is resolved => simple (see

prev. figure)

2. Predict branch not taken :

 -> continue as if nothing happens
 -> following instr. do not change state until BR is
resolved

 -> if fail : flush pipeline

3. Predict taken

 -> after the decode + target address computed ->
 fetch from target (no advantage in MIPS)

Predict non-taken

36

Figure C.12

Copyright © 2011, Elsevier Inc. All rights Reserved.

37

 4. Delayed branch
 -> the instruction(s) in the branch delay slot(s)

 following the br will be executed irrespective
 of the outcome of the branch.
 -> MIPS 1 delay slot.
 -> job of compiler: successor instruction(s) are valid and
useful.

38

Figure C.13

Copyright © 2011, Elsevier Inc. All rights Reserved.

39

 I1
 BR R1 L
 ADD R1
 ADD R2

L: SUB R7
 SUB R8

 BR R1 L
 I1
 ADD R1
 ADD R2

L: SUB R7
 SUB R8

 I1
 BR R1 L
 ADD R1
 ADD R2

L: SUB R7
 SUB R8

 I1
 BR R1 L
 NOP
 ADD R1
 ADD R2

L: SUB R7
 SUB R8

 I1
 BR R1 L2
 SUB R7
 ADD R1
 ADD R2

L: SUB R7
L2: SUB R8

40

Figure C.14

41

Delayed Branches (more)

•  Cannot put a branch in a delay slot
–  Since longer branch delays in newer machines

-> schemes for branch prediction (R4000 = 3 cycles)

•  With 1 delay slot : need to have an extra PC
–  /* in case an interrupt occurs in the instruction

 in the branch delay slot */
•  Impact on the ideal CPI :

pipeline speedup =

 Pipeline depth

1 + branch freq. * branch penalty

42

Example : R4000

 Penalty Penalty Penalty
Branch Scheme unconditional untaken taken
 Stall pipeline 2 3 3
 predict taken 2 3 3
 predict untaken 2 0 3

if frequency -> 4% 10% 6%

CPI = 1 + 0.04*2 + 0.10 * 3 + 0.06*3 = 1.56 stall

43

How to Statically predict Branches

1 Examination of program behavior
–  Since most branches taken → always predict taken
–  Since bck branches taken → predict bck taken , fwd not taken

2 Use profiles of previous runs
 Why ? Branches are usually taken or not-taken
 bimodal distibution
Overall : CPI from pipelining for Integer spec 92 programs
 CPI = 1+ 0.06 + 0.05 = 1.11

pip

from branch

from load

44

Handling Multicycle Operations
•  Floating point operations usually take several EX cycles
•  There are several floating point functional units
•  Example : Assume we have 4 separate FU

–  Integer unit : Ld,St, integer ALU , Br
–  FL Pt and integer MPY
–  Fl Pt adder
–  Fl Pt and integer div

assumptions : 1 Not pipelined
 2 If instruction i cannot proceed to EX,
 entire pipeline behind stalls

45

Figure C.33

46

Figure C.35

47

Resulting Pipeline
For independent instructions
MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
ADDD IF ID A1 A2 A3 A4 MEM WB
LD IF ID EX MEM WB
SD IF ID EX MEM WB
•  Obviously , for the pipelined FU , need extra regs
 Problems
1. Divide FU is not pipelined → may suffer structural hazards
2. Because instructions have varying running times, we
 may try several WB in same cycle
3. Because instructions do not reach WB in order → WAW possible
 WAR not possible : reg always reads in ID

48

 4. Instructions can complete out of order → pbms w/exceptions
5. Long latency operations → frequent RAW stalls

 MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
 F0,F4,F6
 ADD IF ID -- -- -- -- -- -- A1 A2 A3 A4 MEM
 F2,F0,F8
 SD,F2,6(R2) IF -- -- -- -- -- -- ID EX -- -- MEM

 MULTD IF ID M1 M2 M3 M4 M5 M6 M7 MEM WB
 F0,F4,F6
 IF

 IF
 ADD F2,F4,F6 IF ID A1 A2 A3 A4 MEM WB
 Only 1 write port

 in Reg. File

{5

{2

49

How to Prevent Multiple WB?
•  Each instruction, in the ID stage, tracks the current use of

the write port of the register file. If scheduled to use when
the instruction will want to use it: Stall

•  Stall the conflicting instructions when they try to enter the
MEM stage. Heuristic: choose the instruction that came
from the unit with the longest latency
 + No need to try to try to figure out the problem at ID time
 - Instructions can now stall before getting to MEM, which
complicates the pipeline

50

How to Handle WAW Hazards?

ADDD F2,F4,F6 IF ID A1 A2 A3 A4 MEM WB
XOR IF ID
LD F2, 0(R2) IF ID EX MEM WB

•  Only if the result of ADDD is not used (compiler generated)
•  Strategies:

1.  Delay issue of LD until ADDD enters MEM /*it is known at ID time */
2.  Detect the hazard and prevent ADDD from writing. LD can be issued

right away /*again: Known at ID time */

51

Summary of Multicycle Operations

Do at ID time:
•  1. Check for structural hazard: wait until FU not busy and make sure

that register write port will ba available at WB

•  2. Check for RAW hazards: wait until the src regs are not listed as

pending destinations

IF ID A1 A2 A3 A4 MEM WB
 IF ID - - - EX

•  3. Check for WAW hazards: Check if any previous instruction has the
same register destination as present one. If so, stall until that instr enters
the MEM stage

52

Dealing with exceptions
•  Overlapping of instructions in a pipeline: makes it hard to

deal with exceptions
•  Exceptions:

–  Normal execution order of instructions is changed
–  Include what is sometimes referred to as interrupt and fault

•  Examples of exceptions:
I/O device request, invoking an OS service from a user program,

tracing instruction execution, breakpoint, integer arithmetic
overflow and underflow, FP arithmetic anomaly, page fault,
misaligned memory access, memory protection violation, using an
undefined instruction, hardware malfunction, power failure

53

Figure C.30

54

Classification
•  Synchronous vs asynchronous:

–  Synchronous: event occurs at the same place every time
–  Asynchronous: caused by devices external to processor and

memory; can usually be handled after the completion of the current
instruction (easier to handle)

•  User requested vs user coerced:
–  Requested: user directly asks for it; can always be handled after the

instruction has completed
–  Coerced: caused by some hardware event that is not under the

control of the user program

•  User maskable vs unmaskable:
–  Maskable: a user task can mask it

55

Classification
•  Within vs between instructions: the event prevents

instruction completion by happening in the middle of
execution or it is recognized between instructions:
–  Within: usually synchronous; harder to implement since instruction

must be stopped and restarted; exceptions that are within and
asynchronous are usually catastrophic: power failure

•  Resume vs terminate
–  Terminate: program terminates. Easier to implement since no need to

restart the execution

See Figure C.31

56

Difficulty
•  Implementing interrupts occurring within instructions that

are resuming is difficult
•  How to do it? Invoke another program that

–  Save the state of the executing program
–  Correct the cause of the exception
–  Restore the state of the program before the I that caused exception
–  Retry the instruction

•  Process invisible to program
•  If pipeline allows machine to save state, handle exception,

and restart without affecting the execution of program:
restartable machine or pipeline

•  All machines today are restartable (at least for int pipeline)

57

Stopping and restarting execution
•  Focus on exceptions that 1) occur within instruc and 2) are

restartable
•  Example: page fault from a data fetch

–  Occurs when one instruction enters the MEM stage
–  Other instructions already in the pipeline
–  OS must be invoked, save the state in the pipeline, move page to

memory
–  Restore the pipeline as it was and continue
–  If the instruction was a branch: have to reevaluate the condition

58

Saving the pipeline state safely
•  Force a OS instruction into the pipeline on the next IF (the

entry point of an OS trap)
•  Fill with zeros the latches for the instruction that caused the

exception and successors. This prevents any writes and,
therefore, changing any state

•  Save the PC of the offending instruction, so that we can
resume

•  Note: suppose we have a 1 branch delay slot and the
exception happens in the instruction in the slot? In general,
need to save as many PCs as delay slots + 1

59

Returning machine from exception
•  Last instruction in the OS trap handler is a special instruction

that returns the PC of the offending instruction
•  Therefore, the next instruction to execute is the one causing

the exception

•  A pipeline supports precise exceptions if: instructions before
the faulting one can be completed and those after (and
including) it, can be restarted from scratch
–  Easier if the faulting instruction has not updated state (most cases)
–  Harder if it has (e.g. in some FP ops). In this case, the hardware has

to retrieve the old values

•  Programmers prefer precise interrupts: easy in int pipeline

60

Exceptions in Integer MIPS
•  IF: page fault on I-fetch, misaligned memory access,

memory protection violation
•  ID: undefined/illegal opcode
•  EX: arithmetic exception
•  MEM: page fault on D-fetch, misaligned memory access,

memory protection violation
•  WB: none

61

Issues
•  Two exceptions may occur at the same time:
 LD: in the MEM
 ADD: in the EX
 What to do? Repair one and restart; dectect and repair the

second one
•  Two exceptions may appear out of order:
 LD: in the MEM
 ADD: in the IF
 What to do? Hardware posts all exceptions caused by an

instruction in a status vector assoc with the instruction. The
vector is carried down the pipeline with the instr.

62

Issues (cont)
•  Once an exception indication is set in the vector, the

instruction cannot update state (regs or mem)
•  When instr is about to leave MEM, its vector is checked
•  If any bit set, process the exception (if several in the vector,

process the one from the earliest stage in the pipeline)

63

Instruction Set Complications
•  Precise exceptions easy in MIPS: no instruction writes until

the end of the pipe (end of MEM or WB)
•  Other ISAs have instructions that change the state in the

middle:
–  Autoincrement updates a reg in the middle, and then it can

suffer an exception
•  In that case, need extra hardware support to undo the change, to

reset the state to before the instruction (or the exception will be
imprecise)

•  Alternatively, do not let any update until the instruction commits
(it is guaranteed to complete), but it may be complex

–  Instructions that update memory during execution (string
copy)

•  State of partially completed instruction always in registers

64

Exceptions with Long-Running Instr
 DIVF F0,F2,F4
 ADDF F10,F10,F8
 SUBF F12,F12, F14

•  Out of order completion: ADDF, SUBF finish before DIVF
•  Suppose that ADDF completes and then DIVF has an EX

exception
•  Used possible solutions:

–  1. Ignore the problem and use imprecise interrupts. Need to re-
execute the code in a much slower “precise exception” mode. This
mode does not allow as much overlap à only 1 FP active at a time

65

Possible solutions (cont)
•  2. Buffer the result of the FP op until all the FP operations

that were issued before are complete
–  Expensive buffering of much state
–  Buffered results may need to be read by subsequent instr
–  Used in the form of history buffer and future file

•  3. Keep enough information around so that trap-handling
routines can create a precise interrupt: software finishes all
the instructions that precede the one that finished (ADDF)
–  Quite complicated
–  Simplified if we have only 2 FPs executing at a time

66

Possible solutions (Cont)
•  4. Allow instruction issue (entering the EX stage) only

when we know that all the previous instr issued will finish
without exceptions
–  Guarantees precise interrupts
–  It implies often stalling before issuing
–  For it to work: the FP pipeline must decide soon (in 2-3 EX cycles)

if there will be an exception

