Appendix D: Storage Systems

Instructor: Josep Torrellas CS433

Copyright Josep Torrellas 1999, 2001, 2002, 2013

Used for \rightarrow long term storage of files

 \rightarrow temporarily store parts of pgm when running

Disk : collection of 1-12 platters rotating at 3,600-15,000 RPM's magnetic material on both sides (surfaces) diameter = 1.0 - 3.5 in each surface = 5,000 - 30,000 tracks each track $\approx 100-500$ sectors sector : smallest unit that can be read /written

- Traditionally, all tracks = same # sectors → outer tracks record info at lower density; now more sectors on outer tracks
- Movable arm contains Rd/Wr head over each surface
- Arms move together
- Cylinder : all tracks under the arms at a point in time
- Time :
 - \rightarrow seek : move arm to proper track
 - \rightarrow rotational delay : average latency = 1/2 rotation

Avg Rot. Del = 0.5/10,000 rpm = 3.0 ms

- → transfer time : Time taken to transfer 1 block under the rd/wr head (3-65 MB/s)
- \rightarrow disk controller time :
- \rightarrow queuing delay : time until disk is available

Avg time to rd 512 B sector, seek = 5 ms , Xfer rate = 40 MB/s rotation 10,000 rpm ; controller ovh = 0.1ms ; no queuing 5ms + 0.5 + 0.5 KB + 0.1ms10000 + 0.5 KB + 0.1ms

5 + 3.0 + 0.013 + 0.1 = 8.11 ms

Areal density in bits per square inch: Tracks /inch on a disk surface * bits/inch on a track

100% increase per year => double every year (20 Billion bits/sq in now)

Magnetic disks are challenged flash memory:

- Non-volatile
- Latency 100-1000 times lower than disks
- But: Wearout

RAID: Redundant Arrays of Inexpensive Disks

- Disk arrays: Have many disk drives and, therefore, many disk arms (rather than a single disk arm):
 - increase potential throughput
 - unfortunately, with many more devices, dependability decreases: N devices generally have 1/Nth of the reliability of a single device.
 - Result: disk array has many more faults than a smaller number of larger disks
- Add redundant disks to tolerate faults:
 - dependability increases
 - if a single disk fails: the lost information is reconstructed from the redundant information
- Result: RAID: redundant array of inexpensive disks

Issues

- Spread the data over multiple disks: Striping
- If second disk fails while the first one is being repaired, cannot recover
- Not a problem: MTTF of a disk is tens of years, while MTTR is hours --> redundancy makes the measured reliability of 100 disks much higher than that of a single disk.

Other Issues

- Detecting disk faults: usually feasible
- Design of RAIDs that decrease the MTTR: include <u>hot</u> <u>spares on the system:</u> extra disks not used in normal operation that are pressed into service if a failure occurs
- Data missing from the failed disk are reconstructed onto the hot spare using the redundant data from the other RAID disks
- Done automatically, which reduces MTTR
- <u>Hot Swapping:</u>Components are replaced without shutting down the computer
- Overall: a system with hot spares and hot swapping never goes offline.

Different RAID levels (Fig D.4)

RAI	D level	Disk failures tolerated, check space overhead for 8 data disks	Pros	Cons	Company products
0	Nonredundant striped	0 failures, 0 check disks	No space overhead	No protection	Widely used
1	Mirrored	1 failure, 8 check disks	No parity calculation; fast recovery; small writes faster than higher RAIDs; fast reads	Highest check storage overhead	EMC, HP (Tandem), IBM
2	Memory-style ECC	1 failure, 4 check disks	Doesn't rely on failed disk to self-diagnose	~ Log 2 check storage overhead	Not used
3	Bit-interleaved parity	1 failure, 1 check disk	Low check overhead; high bandwidth for large reads or writes	No support for small, random reads or writes	Storage Concepts
4	Block-interleaved parity	1 failure, 1 check disk	Low check overhead; more bandwidth for small reads	Parity disk is small write bottleneck	Network Appliance
5	Block-interleaved distributed parity	1 failure, 1 check disk	Low check overhead; more bandwidth for small reads and writes	Small writes → 4 disk accesses	Widely used
6	Row-diagonal parity, EVEN-ODD	2 failures, 2 check disks	Protects against 2 disk failures	Small writes $\rightarrow 6$ disk accesses; 2× check overhead	Network Appliance

No Redundancy (RAID 0)

- Data are striped but there is no redundancy to tolerate disk failure
- Data appears to the software as laid out in a single large disk
- Improves the performance for large accesses because many disks operate in parallel

Mirroring (RAID 1)

- Also called shadowing
- Use twice as many disks: when data are written to one disk, they are also written to a second one
- If a disk fails, the system goes to the mirror to get the desired information
- Very expensive

Bit-Interleaved Parity (RAID 3)

- Have a <u>**Protection Group**</u>, composed of N disks. One additional disk is used to keep redundant data to restore lost information on a failure
- Popular implementation
- Parity is one example of this scheme
- Assumption: failures very rare
- Mirroring is a special case where N=1

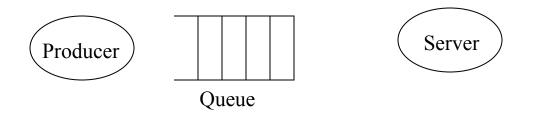
Block-Interleaved Parity (RAID 4)

- Use the same ratio of data disks and check disks as RAID3 but they access data differently
- Parity is stored as blocks and associated with a set of data blocks
- RAID 4: On a write, instead of reading N-1 disks and updating 1 disk and the parity, we read 1 disk and the parity and write one disk and the parity
- RAID 4: Good for small writes

Distributed Block-Interleaved Parity (RAID 5)

- RAID 4: parity disk is updated on every write --> it becomes the bottleneck
- RAID 5: distribute the parity throughout all the disk so that there is no single bottleneck for writes

P + Q Redundancy (RAID 6)


- Adds a second disk per protection group
- This second disk performs a second calculation over the data
- Allows the recovery from a second failure

DMA (Direct Memory Access)

- DMA : hardware to perform transfers of data Mem ↔ I/O without bothering CPU
- \rightarrow DMA is like specialized processor
- \rightarrow acts as a master of the bus
- → CPU sets the DMA regs (mem address,disk blocks,#bytes)
- → once DMA done, CPU is interrupted

I/O Performance Measures

- Response time = time finish server time deposited in queue
- Throughput = #tasks completed by server / unit time

I/O Performance Measures

- → if server always busy ⇒ highest throughput
 ⇒ high response time
- computer transaction has :
 - entry time: time for user to enter the command \rightarrow graphics = 0.25 sec ; keyboard 4.0s
 - system response time : time until the response is displayed
 - think time : time from reception of response to user begins to enter new command
- Transaction time productivity $\alpha = \frac{1}{\text{transaction time}}$

18

 Observation : If response time 1, think time also 1 as a result, transaction time 11