
CS433 Midterm

Prof Josep Torrellas

October 16, 2014

Time: 1 hour + 15 minutes

Name:

Alias:

Instructions:

1. This is a closed-book, closed-notes examination.

2. The Exam has 4 Questions. Please budget your time.

3. Calculators are allowed.

4. Please write your answers neatly. Good luck!

Problem No. Maxm Points Points Scored
1 30
2 20
3 30
3 20

Total 100

1

I Loop Unrolling + Software Pipelining [30 points]

Assume that the following loop is executed a great number of times. It
runs on the MIPS architecture. Assume that ADD.D takes one cycle
and that there is a branch delay slot of 1 cycle.

Sum: L.D R4, 0(R0)
L.D. R5, 0(R1)
ADD.D R4, R4, R5
S.W. R4, 0(R2)
ADD.I R0, R0, #4
ADD.I R1, R1, #4
ADD.I R2, R2, #4
ADD.I R3, R3, # -1
BNE R3, 0, Sum

a. [4 points] How many cycles does it take to run each iteration as
is? Do not move any instructions, and put all the necessary stalls.

b. [8 points] Unroll the loop once (to get an order-2 loop, which means
that two iterations execute in one new iteration) and reorder the
instructions to make the loop run as fast as possible. With the
unrolled loop, how many cycles does each of the old iterations take
now?

2

c. [2 points] If you unroll the loop N times, will the sequence of code
run N times faster? Select only one.

a. Yes, because it is unrolled N times and there is a linear relation
between performance and loop unrolling.

b. Yes, but only in this particular code sequence.

c. No, because this loop does not have many stalls to eliminate.

d. No, because the loop has more instructions now.

d. [2 points] Suppose you have infinite registers, what do you gain
by unrolling this particular loop beyond one time? Select only one.

a. I can make the sequence run faster linearly with the number of
times I unroll the loop.

b. I will only reduce part of the overhead of the branches and
address calculations.

c. I gain nothing by unrolling it a great number of times.

d. I gain in memory because the code occupies less space.

Now, you will software pipeline the loop. We will work one step at
a time. Do not worry about the branch and address calculation.

e. [4 points] Divide the loop iteration into pipeline stages

3

f. [4 points] Write the steady state software pipelined loop

g. [3 points] Write the prolog instructions

h. [3 points] Write the epilog instructions

4

II Single Issue and Hardware Speculation [20 points]

This problem concerns Tomasulo algorithm with single issue and hard-
ware speculation. Consider the following assumptions to solve this prob-
lem.

Fuctional Unit Type Cycles in EX
Integer Mul 2
Integer Div 10
Integer Add 1

Table 1: Execution times

• Assume you have unlimited reservation stations, functional units,
CDBs, and reorder buffer entries.

• Functional units are not pipelined.

• An instruction waiting for data on the CDB can move to its EX
stage in the cycle after the CDB broadcast.

• Assume that integer instructions also follow Tomasulos algorithm
(analogous to the floating point instructions) so they can be issued
out of order and the result from the integer functional unit is also
broadcast on the CDB and forwarded to dependent instructions
through the CDB.

• Assume the processor can issue into the reservation stations (and
reorder buffer) only one instruction per cycle.

• Assume it can commit only one instruction per cycle as well.

Complete the following table using Tomasulos algorithm with the above
specifications. Fill in the cycle numbers in each pipeline stage for each
instruction (CMT stands for the commit stage). For each instruction,
indicate where its source operands are read from (use RF for register
file, ROB for reorder buffer, and CDB for common data bus). The
entries for the first instruction and for the issue stage are filled in for
you.

Important: For each stall, **write** on the paper the reason for the
stall. No explanation, no points.

5

Instruction IS Src operand 1 Src operand 2 EX WB CM
1 MUL R2, ,R6, R12 1 RF RF 2 4 5
2 DIV R1, R1, R2
3 ADD R5, R1, R3
4 ADDI R7, R5,4
5 ADD R5, R6, R8
6 ADDI R8, R8, 2
7 ADD R9, R6, R9
8 ADD R5, R5, R10
9 ADD R6, R8, R5

Table 2: Execution using Single Issue and Hardware Speculation

6

III Pipelining [30 points]

A. Modified MIPS Pipeline

We change the MIPS pipeline so that EX now takes 2 cycles, and
both the branch outcome and target are computed in the first EX
cycle. Normal operations take the 2 EX cycles to complete. Also,
MEM takes two cycles, but the store *data* is only needed in the
second MEM cycle.

IF instruction fetch
ID register read and instruction decode
EX1 first stage of execution. Branch condition and target are computed

in this cycle. Normal instructions need the 2 EX cycles to
execute.

EX2 second stage of execution; ALU results and effective
address for loads and stores need the two EX cycles.

MEM1 first cycle of data memory access; only address is needed.
MEM2 second cycle of data memory access; store data needed at the beginning

of this cycle, load data available at the end of this cycle.
WB write back of results

Assume the register file operates on split cycles as discussed in class,
so as to minimize bypassing requirements.

a) [5 points] How many branch delay slots are there? Why?

b) [5 points] Assuming all possible forwarding is supported, how
many stall cycles we have in the following case? (draw a pipeline
picture)

ADD R1 R2 R3

ADD R7 R1 R6

7

c) [5 points] Repeat b) for:

LOAD R1, 10(R5)

ADD R7 R1 R6

d) [5 points] Repeat b) for:

LOAD R1, 10(R5)

STORE R1, 8(R8)

8

B. [10 points] Now go back to the original MIPS Pipeline

Consider the following two J-type MIPS instructions:

JR Reg

J name

The first one is encoded as 6 bits for opcode and 5 bits for register.
The second one is encoded as 6 bits for opcode and 26 bits for offset.
Assume that these two instructions complete at the EX stage. Draw
the modifications to the ID and EX stage of the MIPS pipeline that
are needed to support these instructions. Add as little hardware as
possible. Please draw two different figures; one for each instruction.

9

C. Exceptions [20 points]

a. [4 points] What does it mean that a pipeline supports precise
exceptions?

b. [4 points] How does a pipeline support precise exceptions?

c. [4 points] List one good thing and one bad thing of precise
exceptions?

d. [4 points] What is a statically and a dynamically scheduled
machine?

e. [4 points] What is a superscalar and a VLIW? Are they static
or dynamic machines?

10

