
CS433	Homework	6	
	

Assigned	on	11/28/2017	
Due	in	class	on	12/12/2017	

	
Instructions:	

1. Please	write	your	name	and	NetID	clearly	on	the	first	page.	
2. Refer	to	the	course	fact	sheet	for	policies	on	collaboration.	
3. Due	IN	CLASS	on	12/12/2017.	

	

Problem	1	[15	points]	
This	problem	considers	the	simple	MSI,	bus-based	snooping	protocol	for	cache	coherence	
discussed	in	class.	There	are	several	processor/cache	nodes	connected	to	the	bus,	along	with	
main	memory.	Each	processor	has	a	private	L1	cache	that	is	direct	mapped	and	contains	4	
blocks	of	two	words	each.	The	initial	state	of	main	memory	and	each	cache	block	is	shown	in	
the	figure	below.	To	simplify	the	figure,	the	cache	address	tag	contains	the	full	address	and	
each	word	shows	only	two	hex	characters	(the	rest	of	the	data	word	is	all	zeroes,	not	shown).	
The	lower	addressed	word	of	the	block	is	on	the	right;	i.e.,	for	block	B0	of	cache	P0,	the	data	for	
address	x100	is	on	the	right,	and	the	data	for	x104	is	on	the	left.	The	coherence	states	are	
denoted	M,	S,	and	I	for	Modified,	Shared,	and	Invalid,	respectively.	Addresses	and	data	are	
represented	in	hexadecimal.	

	



List	the	cache	block	states	that	change	for	each	of	the	actions	below.	Treat	each	as	an	
independent	action	applied	to	the	initial	state	shown,	do	not	accumulate	changes	from	one	
part	to	the	next.	Simply	list	the	blocks	that	change	state	in	any	cache	and	memory	for	each	
action.	List	your	answer	in	the	form	P0.B0:	(I,	100,	00,	10)	to	mean	processor	cache	P0's	Block	
B0	is	Invalid,	the	tag	holds	100,	the	data	words	are	00	and	10;	for	memory	use	M:100	(00,00).	
The	action	write	addr¬data	means	write	data	word	data	to	address	addr.	When	a	block	
changes	to	Invalid,	assume	only	the	state	bit	changes,	so	your	answer	should	include	the	tag	
and	data	field’s	actual	(current)	values.	

(1)	P15:	read	118	

(2)	P15:	write	100	¬48	

(3)	P15:	write	118	¬80	

(4)	P15:	write	108	¬80	

(5)	P15:	read	110	

(6)	P15:	read	128	

(7)	P15:	write	110	¬40	

	 	



Problem	2	[21	points]	
Based	on	the	MSI	protocol,	the	MESI	protocol	(also	known	as	Illinois	protocol)	adds	a	fourth	
state,	Exclusive.		For	a	cache	line	to	be	held	in	Exclusive	state,	the	following	conditions	must	
hold:	

- This	is	the	only	processor	with	a	copy	of	the	cache	block	
(i.e.	in	all	other	caches,	this	line	is	Invalid)	

- The	cache	line	in	this	cache	is	clean	(has	not	been	written)	
	

Assume	that	after	a	cache	performs	a	transaction	on	a	bus,	there	is	a	mechanism	for	the	cache	
to	know	whether	other	caches	have	a	copy	of	the	requested	block	or	not	at	that	time.	This	
enables	the	cache	to	determine	whether	to	transition	to	exclusive	state.	

Also	assume	that	on	a	request	for	a	line	on	a	bus,	memory	always	attempts	to	service	the	line	
unless	a	cache	specifically	aborts	that	attempt	(because	the	cache	is	in	a	state	that	requires	it	to	
service	the	request).	

Suppose	a	two-processor	system	uses	the	MESI	protocol	for	cache	coherence.	Suppose	in	part	
of	a	program,	the	two	processors	issue	the	following	stream	of	memory	operations	to	a	single	
memory	address	in	the	order	and	interleaving	in	the	table	below.	There	are	no	other	accesses	
in	between.		Assume	that	the	memory	address	contains	value	0	initially.	Fill	out	the	state	of	the	
caches	after	each	operation	in	the	table	below,	and	what	bus	request	the	processor	broadcasts	
when	it	performs	the	operation,	if	any.	Also	fill	out	the	data	value	in	the	caches	and	at	memory	
at	the	end	of	each	operation.	Write	X	below	means	a	write	with	value	X	to	the	considered	
address.	

Operations	 Bus	
Request	

P1	Cache	 P2	Cache	 Memory	
P1	 P2	 State	 Data	 State	 Data	
	 	 -	 I	 17	 I	 23	 0	
Read	 	 	 	 	 	 	 	
Read	 	 	 	 	 	 	 	
Write	3	 	 	 	 	 	 	 	
	 Read	 	 	 	 	 	 	
	 Read	 	 	 	 	 	 	
	 Write	4	 	 	 	 	 	 	
	 Write	5	 	 	 	 	 	 	
	

	 	



Problem	3	[6	points]	
compare-and-swap(R1,R2,L)	is	an	atomic	synchronization	primitive	which	atomically	compares	
the	value	in	memory	location	L	with	R1,	and	if	and	only	if	they	are	equal,	exchanges	the	values	
in	R2	and	L.	compare-and-swap(R1,R2,L)	can	be	used	to	efficiently	emulate	many	other	
primitives.	

Part	A	[2	points]	
Implement	an	atomic	test-and-set	on	memory	address	L	in	assembly	using	compare-and-
swap(R1,R2,L)	as	the	only	atomic	primitive.	Let	L	=	1	when	the	lock	is	taken	and	L	=	0	when	it	is	
free,	and	these	will	be	the	only	values	present	at	L.	You	may	use	any	registers	you	like.	
(HINT:	If	the	location	is	in	a	certain	state,	you	do	not	need	to	do	anything.)	

	

	

Part	B	[2	points]	
Implement	the	test-and-test-and-set	semantics	on	memory	address	L	in	assembly	using	
compare-and-swap	as	the	only	atomic	primitive.	Let	L=1	when	the	lock	is	taken,	and	L=0	when	
it	is	free.	You	can	use	any	registers	you	like	as	well	as	ordinary	loads	and	stores.	Include	any	
instructions	needed	to	ensure	that	the	operation	eventually	completes	successfully,	as	if	you	
are	actually	trying	to	acquire	a	lock.	

	

	

	

Part	C	[2	points]	
Use	compare-and-swap	to	implement	an	atomic	fetch-and-increment(R1,L)	in	assembly,	which	
atomically	copies	the	old	value	in	L	to	R1	and	then	increments	the	value	in	L	by	1.	Again,	you	
can	use	any	registers	you	like	well	as	ordinary	loads	and	stores.	Include	any	instructions	needed	
to	ensure	that	the	operation	eventually	completes	successfully;	i.e.,	the	increment	must	be	
guaranteed	to	occur	atomically.	

	 	



Problem	4	[10	points]	
We	want	to	calculate	the	reliability	of	an	I/O	subsystem	with	the	following	components	and	
MTTF	(mean	time	till	failure):	

- 4	disks,	each	120	GB	and	rated	at	500,000-hour	MTTF	
- 1	IDE	controller,	10,000,000-hour	MTTF	
- 1	power	supply,	800,000-hour	MTTF	
- 4	IDE	cables,	2,000,000-hour	MTTF	

	

Assume	component	lifetimes	are	exponentially	distributed	and	the	failures	of	the	different	
components	are	independent.	

Part	A	[4	points]	
What	is	the	MTTF	of	the	entire	I/O	subsystem?		

	

	

Part	B	[3	points]	
We	want	more	space	and	performance	and	decides	to	double	the	number	of	hard	disks	and	put	
all	the	disks	under	RAID	0	(no	redundancy).	What	is	the	MTTF	for	the	new	I/O	subsystem?	Note,	
we	will	naturally	also	be	adding	4	IDE	cables	for	the	4	new	hard	disks	too.		

	

	

Part	C	[3	points]	
Now	we	are	concerned	with	the	reliability	of	system	and	decide	to	use	RAID3	on	6	hard	disks.	
Assuming	a	working	hot	swap	drive	is	available	at	all	times,	and	it	takes	1	hour	to	reconstruct	
the	data	onto	this	new	replacement	drive.	What	is	the	mean	time	till	data	loss?	Assume	the	
error	we	are	concerned	with	is	when	a	drive	fails	and	during	the	reconstruction,	when	the	RAID	
system	is	vulnerable	to	data	loss,	another	of	the	drives	fails.	

	 	



Problem	5	[6	points]	
Consider	the	following	hard	drive:	

Seek	Time		 8	ms	
Rotation	Speed	 7200	rpm	
Transfer	Rate	 80	MB/s	
Controller	Overhead	 0.1	ms	
Sector	Size	 512	Bytes	

	

We	have	a	1	MB	binary	file	stored	on	a	single	track.	The	file	contains	sorted	key/value	pairs.	
Each	pair	consists	of	two	integers.	The	first	integer	is	the	key	and	the	second	is	its	
corresponding	value.	Integers	are	4	bytes	long.	Assuming	the	integer	key	we	are	searching	for	is	
contained	within	the	file,	calculate	the	average	time	needed	to	find	its	corresponding	value	
using	sequential	search.	Assume	the	only	significant	factor	in	the	search	time	is	the	time	to	
transfer	sectors	from	disk	(once	transferred	to	memory,	the	time	needed	for	to	process	each	
record	is	negligible).	Assume	we	can	process	the	file	as	we	read.	On	average,	how	long	does	it	
take	to	find	a	key/value	pair	on	the	hard	disk?	[6	points]	

	 	



Problem	6	(for	graduate	students	only)	[8	points]	
Considering	the	disk	storage	system	from	problem	5,	what	would	be	the	worst	case	time	
needed	if	we	used	binary	search?		

	


