
CS 433 Homework 4

Assigned on 10/17/2017
Due in class on 11/7/2017

Instructions:

1. Please write your name and NetID clearly on the first page.

2. Refer to the course fact sheet for policies on collaboration.

3. Due IN CLASS on 11/7/2017.

Problem 1 [7 Points]

Consider a 4MB 8-way set-associative write-back cache with 64 byte block size
for byte-addressable memory with 32-bit address. Assume a random replace-
ment policy and a single core system.

Part A [2 points]

Which bits of the address counting from 0 as the LSB are used for the cache
index?

Number of bytes per block = 64 = 26

Number of cache blocks = 222

26 = 216

Number of blocks per way = 216

8 = 213

Number of bits for offset within a block = 6
Number of bits for index = 13

Bits 0-5 are used for the offset and bits 6-18 are used for indexing.

1

Part B [2 points]

Which bits of the address are used for the cache tag?

Bits 19-31 are used for the tag.

Part C [3 points]

How many bits of total storage does this cache need besides the 4MB for data?
Remember to include any state bits needed.

13 bits for the tag, 1 bit for valid/invalid and 1 dirty bit for each cache line.
This amounts to 15 × 216 bits or 120 KB.

Problem 2 [16 points]

Consider a processor where each instruction takes, on average, 2 cycles and
there are 1.5 references to memory per instruction. A program with 100,000
instructions is executed on this machine using a split cache of 32KB, obtaining
a 95% hit rate, 2 ns hit time and an 18 ns miss penalty. Then, the same program
is executed using a 64KB cache, resulting in a hit rate of 97%, a hit time of 3
ns and the same miss penalty that in the previous case. The cycle time of the
processor is adjusted to match the cache hit latency.

Part A [1 point]

Explain why the larger cache has higher hit rate.

The larger cache can eliminate the capacity misses.

Part B [1 points]

Explain why the small cache has smaller access time (hit time).

The smaller cache requires lesser hardware and overheads, allowing a faster
response.

2

Part C [4 points]

Calculate the AMAT for both cases. Which cache is better from this point of
view?

AMAT = Hit time + Missrate * Miss penalty
For the smaller cache, AMAT = 2 + 0.05 × 18 = 2.9 ns
For the larger cache, AMAT = 3 + 0.03 × 18 = 3.54 ns

The 32 KB cache is better in terms of AMAT.

2 points for each AMAT.

Part D [4 points]

Calculate the CPI for both cases. Which cache is better from this point of view?

CPI = Nominal CPI + Miss penalty
For the smaller cache,
Cycle time = 2 ns
Miss penalty in cycle = 18 / 2 = 9 cycles
CPI = 2 + 1.5 × 0.05 × 9 = 2.675
For the larger cache,
Cycle time = 3 ns
Miss penalty in cycle = 18 / 3 = 6 cycles
CPI = 2 + 1.5 × 0.03 × 6 = 2.27

The 64 KB cache is better in terms of CPI.

2 points for each CPI.

Part E [6 points]

Calculate the execution time for both cases. Which cache is better? Please find
the speedup.

Execution time = # of instructions * CPI * Cycle time
For the smaller cache = 100000 × 2.675 × 2ns = 535µs
For the larger cache = 100000 × 2.27 × 3ns = 681µs

The smaller cache is 22.5% faster.

3 points for each execution time.

3

Problem 3 [20 points]

Consider the following piece of code:

register int i, j; /* times i, j are in the processor registers */

register float sum1, sum2;

float a[64][64], b[64][64];

for (i = 0; i < 64; i++) { /* (1) */

for (j = 0; j < 64; j++) { /* (2) */

sum1 += a[i][j]; /* (3) */

}

for (j = 0; j < 32; j++){ /* (4) */

sum2 += b[i][2*j]; /* (5) */

}

}

Assume the following:

• There is a perfect instruction cache (i.e., do not worry about the time for
any instruction accesses).

• Both int and float are 4 bytes.

• Assume that only the accesses to the array locations a[i][j] and b[i][2*j]
generate loads to the data cache. The rest of the variables are all allocated
in registers.

• Assume a fully associative, LRU data cache with 32 lines, where each line
has 16 bytes.

• Initially, the data cache is empty.

• The arrays a and b are stored in row major form.

• To keep things simple, we will assume that statements in the above code
are executed sequentially. The time to execute lines (1), (2), and (4) is 4
cycles for each invocation. Lines (3) and (5) take 10 cycles to execute and
an additional 40 cycles to wait for the data if there is a data cache miss.

• There is a data prefetch instruction with the format prefetch(array[index]).
This prefetches the entire block containing the word array[index] into the
data cache. It takes 1 cycle for the processor to execute this instruction
and send it to the data cache. The processor can then go ahead and
execute subsequent instructions. If the prefetched data is not in the cache,
it takes 40 cycles for the data to get loaded into the cache.

• Assume that the arrays a and b both start at cache line boundaries.

4

Part A [4 points]

How many cycles does the above code fragment take to execute if we do NOT
use prefetching?

Each line has 4 values, so every fourth access in line 3 will miss, and every
other in line 5, for a total of 64 × (16 + 16) = 2048 misses.

Line 1 executes 65 times, 65 × 4 = 260
Line 2 executes 64 × 65 times, 64 × 65 × 4 = 16640
Line 3 executes 64 × 64 times, 64 × 64 × 10 = 40960 (leaving misses for
later)
Line 3 misses 64 × 64

4 times, 64 × 64
4 × 40 = 40960

Line 4 executes 64 × 33 times, 64 × 33 × 4 = 8448
Line 5 executes 64 × 32 times, 64 × 32 × 10 = 20480 (leaving misses for
later).
Line 5 misses 64 × 32

2 times, 64 × 32
2 × 40 = 40960

Total cycles = 168708

Part B [4 points]

Consider inserting prefetch instructions for the two inner loops for the arrays
a and b respectively. Explain why we may want to unroll the loops to insert
prefetches. What is the minimum number of times you would need to unroll for
each of the two loops for this purpose?

Ideally, prefetch instructions should be separated enough so that the
previous prefetch receives the data before starting the next prefetch.
However, the original loop body is too small. There is one miss every
fourth iteration of the first loop, and every other iteration of the second
loop. Assuming prefetching eliminates cache misses, thus, each loop body
takes only 10 cycles which is not enough to hide prefetching latency of
40 cycles. We can increase the size of the loop body by applying loop
unrolling. The first loop would need to be unrolled 4 times, and the second
two times for this purpose.

2 points for the reason for loop unrolling; 1 point for the correct minimum
number of unrolling for each loop;

5

Part C [8 points]

Unroll the inner loops for the number of times identified in part b, and insert
the minimum number of prefetch instructions to minimize execution time. The
technique to insert prefetches is analogous to software pipelining. You do not
need to worry about startup and cleanup code and do not introduce any new
loops.

register int i,j; /* i, j are in the processor registers */

register float sum1, sum2, a[64][64], b[64][64];

for (i = 0; i < 64; i++) { /* (1) */

for (j = 0; j < 64; j+=4) { /* (2) */

prefetch(a[i][j+4]); /* (P1) */

sum1 += a[i][j]; /* (3a) */

sum1 += a[i][j+1]; /* (3b) */

sum1 += a[i][j+2]; /* (3c) */

sum1 += a[i][j+3]; /* (3d) */

}

for (j = 0; j < 32; j+=2){ /* (4) */

prefetch(b[i][2*j+8]; /* (P2) */

sum2 += b[i][2*j]; /* (5a) */

sum2 += b[i][2*j+2]; /* (5b) */

}

}

2 points for correct index for each prefetch instruction; 3 points for correct
loop unrolling of each loop;

6

Part D [4 points]

How many cycles does the code in part (c) take to execute? Calculate the
average speedup over the code without prefetching. Assume prefetches are not
present in the startup code. Extra time needed by prefetches executing beyond
the end of the loop execution time should not be counted.

Now only the only misses are on the very first execution of line 3a (row
major ordering means prefetching is effective even across outer iterations),
and the first two executions of line 5a (the prefetch is preparing for the
j+2 iteration). There are 3 misses total.

Line 1 executes 65 times, 65 × 4 = 260
Line 2 executes 64 × 17 times, 64 × 17 × 4 = 4352
Line P1 executes 64 × 16 times, 64 × 16 × 1 = 1024
Line 3a-3d each execute 64 × 16 times, 64 × 16 × 4 × 10 = 40960
Line 3a misses only on its every first execution. 40 × 1 = 40
Line 4 executes 64 × 17 times, 64 × 17 × 4 = 4352
Line P2 executes 64 × 16 times, 64 × 16 × 1 = 1024
Line 5a,5b each execute 64 × 16 times. 64 × 16 × 2 × 10 = 20480
Line 5a misses on the first two executions. 40 × 2 = 80
Total cycles = 72572

The speedup over the code with no prefetching is 168708
72572 , approximately

2.32.

2 points for correctly counting the number of misses; 1 point for correctly
computing the overhead of each prefetch instruction;

7

Problem 4 [12 points]

Consider a virtual memory system where a TLB access takes 2 ns and there
is a single level of a set-associative, write-back data cache with the following
parameters:

• indexing the cache to access the data portion takes 6 ns

• indexing the tag array of the data cache takes 4 ns

• tag comparisons take 1.5 ns

• multiplexing the output data takes 1 ns

Assume these are the only parts that affect the cache access time. For each
of the following configurations, calculate the amount of time it takes to get
data from the cache on a hit, including any necessary TLB access time. Please
explain your answers for full credit.

Part A [3 points]

The page size is 4KB and the data cache is 64 KB, 4-way set associative, with
block size of 16 bytes. The cache is physically-indexed and physically-tagged.

Bits required for indexing = log 216

4×16 = 10
Bits required for block offset = 4
Total bits required to access the cache = 14
Total bits for the page offset = 12

So physical indexing cannot proceed before translation.

The virtual address must be translated before anything else can happen.
So the 2 ns delay of the TLB access must be added into the total. Accessing
the data and tag arrays may occur in parallel. The data values are available
after 2 + 6 = 8ns and the tag hit signal appears at 2 + 4 + 1.5 = 7.5ns.
At this point, the correct way can be selected from the mux, which has an
additional 1ns delay. Therefore, the total access time is 9ns.

1 point for performing indexing after translation; 1 point for indexing in
parallel with translation; 1 point for multiplexing and getting the correct
answer;

8

Part B [3 points]

Same as the part A except that the cache is virtually-indexed and virtually-
tagged.

In a virtually-indexed, virtually-tagged cache, the TLB is not used unless
there is a cache miss, at which point translation would be required.
Besides the TLB, the access is served in the same manner as above. Thus,
the access time will be the part A’s time minus the TLB access time, which
is 9 - 2 = 7 ns.

1 point for noting that translation is unnecessary; 1 point for index and tag
path times; 1 point for multiplexing and getting the correct answer;

Part C [3 points]

Same as the part A except that the cache is virtually-indexed and physically-
tagged.

Physical tag comparison requires TLB translation. However, since the
index is virtual, it can be sent to the cache to initiate the tag array and
data array accesses while the TLB translation is happening. Since they
take longer than the TLB access, the TLB access time will be hidden and
not on the critical path. After 4ns, the tags will be sent to the comparator
with the translated tag from the TLB. After 5.5ns the tag hit signal will
be generated. Accessing the data array occurs in parallel and will happen
at 6ns. After a 1 ns delay from multiplexing the data, the data will be
available at 7ns.

1 point for noting that translation is needed for tag but not on the critical
path; 1 point for the intermediate calculations; 1 point for multiplexing and
getting the correct answer;

9

Part D [3 points]

Same as the part A except that the cache is physically-indexed and virtually-
tagged.

The index is physical and requires translation by the TLB. This results in
a 2ns delay in translating the index. Although the virtual tag is available
at time zero, nothing can be done with it until an index is available. Once
the index is translated, it can be used to access the tag and data arrays.
Data is available at 8ns while the tag hit signal comes at 7.5ns. Adding
the 1ns delay from multiplexing the data, the total access time is 9ns.

1 point for noting that translation is needed for index; 1 point for the inter-
mediate calculations; 1 pt for multiplexing and getting the correct answer;

10

Problem 5: Graduate students only [12 points]

You are building a computer system around a processor with in-order execution
that runs at 1 GHz and has a CPI of 1, excluding memory accesses. The only
instructions that read or write data from/to memory are loads (20% of total
instructions) and stores (5% of total instructions).

The memory system for this computer has a split L1 cache. Both the I-cache
and the D-cache are direct-mapped and hold 32 KB each. The I-cache has a
2% miss rate and 64 byte blocks, and the D-cache is a write-through, no-write-
allocate cache with a 5% miss rate and 64 byte blocks. The hit time for both
the I-cache and the D-cache is 1 ns.

The L1 cache has a write buffer. 90% of writes to L1 find a free entry in
the write buffer immediately. The other 10% of the writes have to wait until
an entry frees up in the write buffer. An entry is held while the write buffer
initiates a request to L2 and waits for L2. The processor is stalled on a write
until a free write buffer entry is available.

The L2 cache is a unified write-back, write-allocate cache with a total size
of 512 KB and a block size of 64 bytes. The hit time of the L2 cache is 12 ns for
both read hits and write hits. L2 write for a miss takes 12 ns (after the allocate
is done). Tag comparison for hit/miss is included in the 12 ns in all cases, do
not add hit time to miss time on a miss. The local hit rate of the L2 cache is
80%. Also, 50% of all L2 cache blocks replaced are dirty.

The 64-bit wide main memory has an access latency of 20 ns (including the
time for the request to reach from the L2 cache to the main memory), after
which any number of bus words may be transferred at the rate of one bus word
(64 bit) per bus cycle on the 64-bit wide 100 MHz main memory bus.

Assume inclusion between the L1 and L2 caches, and assume there is no
write-back buffer at the L2 cache. Assume a write-back takes the same amount
of time as a read of the same size from memory.

While calculating any time values (such as hit time, miss penalty, AMAT),
please use ns (nanoseconds) as the unit of time. For miss rates below, give the
local miss rate for that cache. By miss penaltyL2, we mean the time from the
miss request issued by the L2 cache up to the time the data comes back to the
L2 cache from main memory.

11

Part A [7 points]

Compute the AMAT (average memory access time) for instruction accesses.

1. Give the values of the following terms for instruction accesses. L1 hit time,
L1 miss rate, L2 hit time, and L2 miss rate. [1 point]

(L1 hit time) = 1 ns
(Cycle time) = 1 ns
(L1 miss rate) = 0.02
(L2 hit time) = 12 ns
(L2 miss rate) = 1 − 0.8 = 0.2

2. Give the formula for calculating L2 miss penalty, and compute the value
of L2 miss penalty. Don’t forget to include the time to write back a dirty
block. [4 points]

(L2 miss penalty) = (read a new block from memory) + 0.5 * (write
back a dirty block to memory)

Memory transfer between L2 and memory takes the same amount of
time regardless of read or write.

(Transfer rate of memory bus)
= 64 bits / bus cycle
= 64 bits / 10 ns
= 8 bytes / 10 ns
= 0.8 bytes / ns

(Time to transfer a L2 cache block) = 64 / 0.8 = 80 ns

(read a new block from memory) = (write back a dirty block to
memory) = 20 + 80 = 100 ns

(L2 miss penalty) = 100 + 0.5 * 100 = 150 ns

2 point for the correct formula for L2 miss penalty; 1 point for time
to transfer a block; 1 pt for the remaining part;

12

3. Give the formula for calculating the AMAT for this system using the five
terms whose values you computed above and any other values you need.
[1 point]

AMAT = (L1 hit time) + (L1 miss rate) x ((L2 hit time) + (L2 miss
rate) x (L2 miss penalty))

4. Plug in the values into the AMAT formula above, and compute a numerical
value for AMAT for instruction accesses. [1 point]

AMAT = 1 + 0.02 x (12 + 0.2 x 150) = 1.84 ns.

Part B [2 points]

Compute the AMAT for data reads.

1. Give the value of L1 miss rate for data reads. [1 point]

(L1 miss rate) = 0.05

2. Calculate the value of the AMAT for data reads. [1 point]

AMAT = (L1 hit time) + (L1 miss rate) x ((L2 hit time) + (L2 miss
rate) x (L2 miss penalty))
= 1 + 0.05 x (12 + 0.2 x 150)
= 3.1 ns

Part C [3 points]

Compute the AMAT for data writes. Assume the miss penalty for a data write
is the same as computed previously for a data read.

1. Give the value of time for a write buffer entry being written to the L2
cache. [2 points]

As the L2 cache hit rate is 80%, only 20% of the write buffer writes
will miss in the L2 cache and will thus incur the L2 miss penalty.

(Write buffer time) = (L2 hit time) + 0.2 x (L2 miss penalty) = 1 x
12 + 0.2 x 150 = 42 ns

13

2. Calculate the value of the AMAT for data writes using the above infor-
mation, and any other values that you need. Only include the time that
the processor will be stalled. Hint: There are two cases to be considered
here depending upon whether the write buffer is full or not. [1 point]

There are two cases to consider here. In 90% of the cases the write
buffer will have empty space, so the processor will only need to wait 1
cycle. In the remaining 10% of the cases, the write buffer will be full,
and the processor will have to wait for the additional time taken for
a buffer entry to be written to the L2 cache, which is computed above.

AMAT = (L1 hit time) + 0.1 x (write buffer time) = 1 + 0.1 x 42 =
5.2 ns

14

