
CS433	Homework	3	
(Chapter	3)	

	
Assigned	on	10/3/2017	

Due	in	class	on	10/5/2017	
	
Instructions:	

1. Please	write	your	name	and	NetID	clearly	on	the	first	page.	
2. Refer	to	the	course	fact	sheet	for	policies	on	collaboration.	
3. Due	IN	CLASS	on	10/5/2017.	

	
	
Problem	1	[50	points]	
In	this	problem,	we	explore	the	ability	of	the	compiler	to	schedule	code.		Let’s	assume	the	
pipeline	with	following	characteristics:	

- Unless	otherwise	specified,	its	properties	are	like	those	in	the	MIPS	pipeline	we	studied	
in	class.	

- The	pipeline	will	not	stall	due	to	dependences.	
- There	is	1	integer	functional	unit,	taking	1	cycle	to	perform	integer	addition	(including	

effective	address	calculation	for	loads/stores),	subtraction,	and	logic	operations.	
- There	is	1	FP/integer	multiplier,	taking	7	cycles	to	perform	any	multiply.		It	is	pipelined.	
- There	is	1	FP	adder,	taking	3	cycles	to	perform	FP	additions	and	subtractions.		It	is	

pipelined.	
- There	is	1	FP/integer	divider,	taking	10	cycles.		It	is	not	pipelined.	
- There	is	full	forwarding	and	bypassing,	including	forwarding	from	the	end	of	an	FU	to	

the	MEM	stage	for	stores.	
- Loads	and	stores	complete	in	one	cycle.		That	is,	they	spend	one	cycle	in	the	MEM	stage	

after	the	effective	address	calculation.	
- There	are	as	many	registers,	both	FP	and	integer,	as	you	need.	
- Branches	are	resolved	in	ID	and	there	is	one	branch	delay	slot	(after	the	branch)	that	

you	need	to	fill.	
- If	multiple	instructions	finish	their	EX	stages	in	the	same	cycle,	then	we	will	assume	they	

can	all	proceed	to	the	MEM	stage	together.		Similarly,	if	multiple	instructions	finish	their	
MEM	stages	in	the	same	cycle,	then	we	will	assume	they	can	all	proceed	to	the	WB	
stage	together.		In	other	words,	for	the	purpose	of	this	problem,	you	are	to	ignore	
structural	hazards	on	the	MEM	and	WB	stages.	

- Assume	that	operands	are	read	in	ID	stage	and	written	in	WB	stage.	 	



Consider	the	following	loop	where	(1)	R1	and	R2	contain	the	memory	addresses	of	two	arrays	
of	floating	point	numbers	and	(2)	R5	is	initially	set	to	6.	
	
Loop:	 L.D	 	 F2	 0(R1)	

MUL.D		 F4	 F2	 F2	
L.D	 	 F3	 0(R2)	
MUL.D		 F5	 F3	 F3	
ADD.D	 	 F5	 F5	 F4	
ADD.D	 	 F4	 F2	 F3	
DIV.D	 	 F5	 F5	 F4	
S.D		 	 F5	 0(R1)	
DADDUI	 R1	 R1	 #8	
DADDUI	 R2	 R2	 #8	
DSUBUI	 R5	 R5	 #1	
BNEZ	 	 R5	 Loop	

	
Part	A	[5	points]	
Explain	what	the	code	does.	
	
[Answer]	
It	iterates	the	arrays	and	updates	the	first	array	as	below.	
	
while	(i	!=	0):	
	 A[i]	=	(A[i]^2	+	B[i]^2)	/	(A[i]	+	B[i])	
	 i	+=	1	
	
[Grading	Scheme]	
3	points	for	the	correct	loop	structure	
	 	



Part	B	[10	points]	
Rewrite	this	loop	to	insert	NOPs	to	explicitly	express	stalls	due	to	dependences.		For	this	part,	
do	not	reorder	instructions	yet.		If	there	is	a	dependence	between	two	instructions,	insert	NOPs	
to	separate	the	instructions	so	that	the	instruction	can	be	issued	without	stalls.		Notice	that	
some	dependencies	would	require	you	to	insert	multiple	NOPs	in	a	row.		Since	instruction	
reordering	is	not	allowed	in	this	part,	insert	a	NOP	in	the	branch	delay	slot	(effectively	stalling	1	
cycle	after	the	branch).		Complete	the	code	below	and	provide	reasons	for	all	NOPs	inserted.		
Some	parts	are	provided	as	an	example.	
Inst#	 Instruction	 	 	 	 	 Reasons	for	NOP	
1	 Loop:	 L.D	 F2	 0(R1)	 	 	
2	 	 NOP	 	 	 	 RAW	on	F2	
3	 	 MUL.D	 F4	 F2	 F2	 	
4	 	 L.D	 F3	 0(R2)	 	 	
5	 	 NOP	 	 	 	 RAW	on	F3	
6	 	 MUL.D	 F5	 F3	 F3	 	
7	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
8	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
9	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
10	 	 NOP	 	 	 	 RAW	on	F5	
11	 	 NOP	 	 	 	 RAW	on	F5	
12	 	 NOP	 	 	 	 RAW	on	F5	
13	 	 ADD.D	 F5	 F5	 F4	 	
14	 	 ADD.D	 F4	 F2	 F3	 	
15	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
16	 	 NOP	 	 	 	 RAW	on	F4	
17	 	 DIV.D	 F5	 F5	 F4	 	
18	 	 NOP	 	 	 	 RAW	on	F5	
19	 	 NOP	 	 	 	 RAW	on	F5	
20	 	 NOP	 	 	 	 RAW	on	F5	
21	 	 NOP	 	 	 	 RAW	on	F5	
22	 	 NOP	 	 	 	 RAW	on	F5	
23	 	 NOP	 	 	 	 RAW	on	F5	
24	 	 NOP	 	 	 	 RAW	on	F5	
25	 	 NOP	 	 	 	 RAW	on	F5	
26	 	 S.D	 F5	 0(R1)	 	 	
27	 	 DADDUI	 R1	 R1	 #8	 	
28	 	 DADDUI	 R2	 R2	 #8	 	
29	 	 DSUBUI	 R5	 R5	 #1	 	
30	 	 NOP	 	 	 	 RAW	on	R5	
31	 	 BNEZ	 R5	 Loop	 	 	
32	 	 NOP	 	 	 	 Branch	delay	slot	
	[Grading	Scheme]	0.5	points	for	each	row	(listing	one	dependence	is	fine);	max	10	points	 	



Part	C	[10	points]	
Now	reschedule	the	loop.		You	can	change	immediate	values	and	memory	offsets	and	reorder	
instructions,	but	do	not	change	anything	else	(e.g.,	you	cannot	use	more	registers).		Complete	
the	code	below	and	explain	any	remaining	NOPs.		Some	parts	are	provided	as	an	example.	
	
Inst#	 Instruction	 	 	 	 	 Reasons	for	NOP	
1	 Loop:	 L.D	 F2	 0(R1)	 	 	
2	 	 L.D	 F3	 0(R2)	 	 	
3	 	 MUL.D	 F4	 F2	 F2	 	
4	 	 MUL.D	 F5	 F3	 F3	 	
5	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
6	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
7	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
8	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
9	 	 NOP	 	 	 	 RAW	on	F5	
10	 	 ADD.D	 F4	 F2	 F3	 	
11	 	 ADD.D	 F5	 F5	 F4	 	
12	 	 NOP	 	 	 	 RAW	on	F4	and	F5	
13	 	 NOP	 	 	 	 RAW	on	F5	
14	 	 DIV.D	 F5	 F5	 F4	 	
15	 	 DADDUI	 R1	 R1	 #8	 	
16	 	 DADDUI	 R2	 R2	 #8	 	
17	 	 DSUBUI	 R5	 R5	 #1	 	
18	 	 NOP	 	 	 	 RAW	on	F5	and	R5	
19	 	 NOP	 	 	 	 RAW	on	F5	
20	 	 NOP	 	 	 	 RAW	on	F5	
21	 	 NOP	 	 	 	 RAW	on	F5	
22	 	 BNEZ	 R5	 Loop	 	 	
23	 	 S.D	 F5	 -8(R1)	 	 	
	
	[Grading	Scheme]	
0.5	points	for	each	row;	max	10	points	
The	above	is	only	an	example	of	possible	solutions.		Other	correct	solutions	are	accepted	(e.g.,	
placing	integer	operations	in	different	slots).	 	



Part	D	[15	points]	
Now	unroll	and	reschedule	the	loop	for	3	iterations	and	minimize	the	number	of	NOPs.		You	can	
remove	redundant	instructions	and	use	as	many	registers	as	you	need.		Complete	the	code	
below	and	explain	any	remaining	NOPs.		Some	parts	are	provided	as	an	example.	
	
Inst#	 Instruction	 	 	 	 	 Reasons	for	NOP	
1	 Loop:	 L.D	 F2	 0(R1)	 	 	
2	 	 L.D	 F3	 0(R2)	 	 	
3	 	 MUL.D	 F4	 F2	 F2	 	
4	 	 MUL.D	 F5	 F3	 F3	 	
5	 	 ADD.D	 F6	 F2	 F3	 	
6	 	 L.D	 F2-1	 8(R1)	 	 	
7	 	 L.D	 F3-1	 8(R2)	 	 	
8	 	 MUL.D	 F4-1	 F2-1	 F2-1	 	
9	 	 MUL.D	 F5-1	 F3-1	 F3-1	 	
10	 	 ADD.D	 F6-1	 F2-1	 F3-1	 	
11	 	 ADD.D	 F5	 F5	 F4	 	
12	 	 L.D	 F2-2	 16(R1)	 	 	
13	 	 L.D	 F3-2	 16(R2)	 	 	
14	 	 DIV.D	 F5	 F5	 F6	 	
15	 	 MUL.D	 F4-2	 F2-2	 F2-2	 	
16	 	 MUL.D	 F5-2	 F3-2	 F3-2	 	
17	 	 ADD.D	 F5-1	 F5-1	 F4-1	 	
18	 	 ADD.D	 F6-2	 F2-2	 F3-2	 	
19	 	 DADDUI	 R1	 R1	 #24	 	
20	 	 DADDUI	 R2	 R2	 #24	 	
21	 	 DSUBUI	 R5	 R5	 #3	 	
22	 	 NOP	 	 	 	 RAW	on	F5-2	
23	 	 ADD.D	 F5-2	 F5-2	 F4-2	 	
24	 	 DIV.D	 F5-1	 F5-1	 F6-1	 	
25	 	 S.D	 F5	 -24(R1)	 	 	
26	 	 NOP	 	 	 	 RAW	on	F5-1;	Structural	hazard	

on	DIV	
27	 	 NOP	 	 	 	 	
28	 	 NOP	 	 	 	 	
29	 	 NOP	 	 	 	 	
30	 	 NOP	 	 	 	 	
31	 	 NOP	 	 	 	 	
32	 	 NOP	 	 	 	 	
33	 	 NOP	 	 	 	 	
34	 	 DIV.D	 F5-2	 F5-2	 F6-2	 	
35	 	 S.D	 F5-1	 -16(R1)	 	 	



36	 	 NOP	 	 	 	 RAW	on	F5-2	
37	 	 NOP	 	 	 	 RAW	on	F5-2	
38	 	 NOP	 	 	 	 RAW	on	F5-2	
39	 	 NOP	 	 	 	 RAW	on	F5-2	
40	 	 NOP	 	 	 	 RAW	on	F5-2	
41	 	 NOP	 	 	 	 RAW	on	F5-2	
42	 	 BNEZ	 R5	 Loop	 	 	
43	 	 S.D	 F5-2	 -8(R1)	 	 	
	
	[Grading	Scheme]	
0.5	points	for	each	row;	max	15	points	
The	above	is	only	an	example	of	possible	solutions.		Other	correct	solutions	are	accepted.	 	



Part	E	[10	points]	
Unroll	the	loop	3	times	and	schedule	it	for	a	VLIW	machine	to	take	as	few	cycles	as	possible.		
Each	VLIW	instruction	can	contain	one	memory	reference,	one	FP	operation,	and	one	integer	
operation.		Leave	a	row	blank	if	no	operation	can	be	scheduled.		Again,	you	can	change	
immediate	values	and	memory	offsets,	reorder	instructions,	remove	redundant	instructions,	
and	use	as	many	registers	as	you	need.	
	
MEM	op	 FP	op	 INT	op	
L.D	F2	0(R1)	 	 	
L.D	F3	0(R1)	 	 	
L.D	F2-1	8(R1)	 MUL.D	F4	F2	F2	 	
L.D	F3-1	8(R2)	 MUL.D	F5	F3	F3	 	
L.D	F2-2	16(R1)	 ADD.D	F6	F2	F3	 	
L.D	F3-2	16(R2)	 MUL.D	F4-1	F2-1	F2-1	 DADDUI	R1	R1	#24	
	 MUL.D	F5-1	F3-1	F3-1	 DADDUI	R2	R2	#24	
	 ADD.D	F6-1	F2-2	F3-2	 DSUBUI	R5	R5	#3	
	 MUL.D	F4-2	F2-2	F2-2	 	
	 MUL.D	F5-2	F3-2	F3-2	 	
	 ADD.D	F5	F5	F4	 	
	 ADD.D	F6-2	F2-2	F3-2	 	
	 ADD.D	F5-1	F5-1	F4-1	 	
	 DIV.D	F5	F5	F6	 	
	 	 	
	 ADD.D	F5-2	F5-2	F4-2	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
S.D	F5	-24(R1)	 	 	
	 DIV.D	F5-1	F5-1	F6-1	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
S.D	F5-1	-16(R1)	 	 	
	 DIV.D	F5-2	F5-2	F6-2	 	



	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 	
	 	 BNEZ	R5	Loop	
S.D	F5-2	-8(R1)	 	 	
	
	[Grading	Scheme]	
0.5	points	for	each	cell;	max	10	points	
The	above	is	only	an	example	of	possible	solutions.		Other	correct	solutions	are	accepted.	 	



Problem	2	[15	points]	
In	this	problem,	you	will	compare	the	loop	unrolling	and	the	software	pipelining.		Assume	the	
followings:	
	

(1) The	processor	is	a	traditional	5-stage	pipeline	with	an	in-order	core.	
(2) There	are	forwarding	paths	into	the	EX	stage.	
(3) A	branch	is	resolved	in	the	ID	stage	and	it	has	one	branch	delay	slot.	
(4) R1	initially	contains	the	address	of	an	array.	
(5) R2	contains	the	address	of	the	array’s	last	element.	
(6) The	array	contains	many	elements,	so	don’t	worry	about	the	branch	not	taken.	

	
Consider	the	following	loop.	
	
Inst#	 Instruction	 	 	 	 	
1	 Loop:	 L.D	 F1	 0(R1)	 	
2	 	 ADD.D	 F2	 F1	 F1	
3	 	 S.D	 F2	 0(R1)	 	
4	 	 DADDUI	 R1	 R1	 #8	
5	 	 BNE	 R1	 R2	 Loop	
6	 	 NOP	 	 	 	
	
Part	A	[3	points]	
List	all	dependencies	causing	stalls	in	the	code.	
	
[Answer]	
2->1:	RAW	on	F1	
3->2:	RAW	on	F2	
5->4:	RAW	on	R1	
	
[Grading	Scheme]	
1	point	for	each	dependence	
	 	



Part	B	[4	points]	
Complete	the	code	below	which	unroll	the	loop	for	3	iterations	and	reorder	instructions	of	the	
loop	body	to	reduce	stalls.		You	can	use	as	many	registers	as	you	want	and	change	immediate	
values	and	memory	offsets.		List	any	remaining	dependence	causing	stalls.	
	
Inst#	 Instruction	 	 	 	 	
1	 Loop:	 L.D	 F1	 0(R1)	 	
2	 	 L.D	 F1-1	 8(R1)	 	
3	 	 L.D	 F1-2	 16(R1)	 	
4	 	 ADD.D	 F2	 F1	 F1	
5	 	 ADD.D	 F2-1	 F1-1	 F1-1	
6	 	 ADD.D	 F2-2	 F1-2	 F1-2	
7	 	 S.D	 F2	 0(R1)	 	
8	 	 S.D	 F2-1	 8(R1)	 	
9	 	 S.D	 F2-2	 16(R1)	 	
10	 	 DADDUI	 R1	 R1	 #24	
11	 	 BNE	 R1	 R2	 Loop	
12	 	 NOP	 	 	 	
	
[Answer]	
11->10:	RAW	on	R1	
	
[Grading	Scheme]	
0.5	point	for	each	row;	reordering	instructions	differently	is	okay	as	long	as	instructions	from	
the	same	iteration	are	in	order	and	separated	enough;	1	point	for	correctly	identifying	
dependence	
	 	



Part	C	[4	points]	
Complete	the	steady-state	code	for	a	software	pipelined	version	below	which	pipeline	over	3	
iterations.		List	any	remaining	dependence	causing	stalls.	
	
Inst#	 Instruction	 	 	 	 	
1	 Loop:	 S.D	 F2	 0(R1)	 	
2	 	 ADD.D	 F2	 F1	 F1	
3	 	 L.D	 F1	 16(R1)	 	
4	 	 DADDUI	 R1	 R1	 #8	
5	 	 BNE	 R1	 R2	 Loop	
6	 	 NOP	 	 	 	
	
[Answer]	
11->10:	RAW	on	R1	
	
[Grading	Scheme]	
1	point	for	each	row;	1	point	for	correctly	identifying	dependence	
Memory	offsets	of	-16	for	S.D	and	0	for	L.D	are	accepted.	
	
Part	D	[4	points]	
In	order	to	execute	6	iterations	of	the	original	loop,	how	many	instructions	does	each	technique	
have	to	execute?	
	
[Answer]	
Loop	unrolling:	24,	Software	pipelining:	36	
	
[Grading	Scheme]	2	points	for	each	 	



Problem	3	(for	graduate	students	only)	[10	points]	
In	this	problem,	you	need	to	consider	the	following	format	for	predicated	MIPS	instructions:	
	

(pT)	ADD	R1,	R2,	R3	
	
where	the	ADD	instruction	is	predicated	on	the	predicate	register	pT.		Assume	a	set	of	1-bit	
predicate	registers,	and	compare	instructions	which	set	a	pair	of	predicate	registers	to	
complementary	values:	
	

CMP.NE	pT,	pF	=	R8,	R0		
	
The	above	instruction	compare	sets	the	1-bit	predicate	registers,	pT	and	pF,	based	on	the	"not	
equal"	(NE)	comparison	relation	as	follows:	
	

pT	=	(R8	!=	R0)	
pF	=	!(R8!=	R0)	

	
So	pT	is	true	if	R8	is	not	equal	to	R0,	and	pF	is	the	complement	of	pT.		For	the	following	
problem,	you	can	assume	the	availability	of	any	comparison	relation	with	two	operands;	
e.g.,	.LE	for	less	than	or	equal	to	and	.GT	for	greater	than.	
	 	



Part	A	[4	points]	
Using	the	predicated	instructions	described	above,	write	the	three	basic	blocks	of	the	following	
code	fragment	as	a	single	basic	block	(i.e.,	eliminate	all	branches	using	predicated	instructions).	
		

SUB	 	 R1	 R13	 R14 	
BLT	 	 R1	 R4	 L1	 (branch	if	R1	<	R4)	
ADDI	 	 R2	 R2	 #1	
SW	 	 R2	 0(R7)	
J	 	 L2		

L1:	 DIV.D	 	 F0	 F0	 F2	
ADD.D	 	 F0	 F4	 F2	
S.D	 	 F0	 0(R8)		

L2:	 …		
	
[Answer]	

SUB	 	 R1	 R13	 R14	
CMP.LT	 pT,	pF	=	R1,	R4		
(pF)	ADDI	 R2	 R2	 #1		
(pF)	SW		 0(R7)	 R2 	
(pT)	DIV.D		 F0	 F0	 F2		
(pT)	ADD.D	 F0	 F4	 F2		
(pT)	S.D	 0(R8)	 F0		

L2:	 …	
	
[Grading	Scheme]	
0.5	points	for	each	correctly	translated	instruction	(Note	that	for	the	jump	instruction,	J,	the	
correct	translation	is	to	not	have	any	instruction)		 	



Part	B	[6	points]	
What	are	all	the	data	dependencies	in	your	new	code?		Indicate	the	type(RAW,	WAW,	WAR)	of	
each	dependence.		Notice	that	the	predicate	registers	may	also	cause	dependences.	
	
[Answer]	
The	data	dependencies	are:	
(1)	RAW	dependency	due	to	R1	between	SUB	and	CMP.	
(2)	RAW	dependency	due	to	pF	between	CMP	and	ADDI.	
(3)	RAW	dependency	due	to	pF	between	CMP	and	SW.	
(4)	RAW	dependency	due	to	R2	between	ADDI	and	SW.	
(5)	RAW	dependency	due	to	pT	between	CMP	and	DIV.D.	
(6)	RAW	dependency	due	to	pT	between	CMP	and	ADD.D.	
(7)	RAW	dependency	due	to	pT	between	CMP	and	S.D.	
(8)	RAW	dependency	due	to	F0	between	ADD.D	and	S.D.	
(9)	WAW	dependency	due	to	F0	between	DIV.D	and	ADD.D.	
(10)	WAR	dependency	due	to	F0	between	DIV.D	and	ADD.D.	
	
[Grading	Scheme]	
0.5	points	for	each	correct	dependence	


