
CS433	Homework	2	
(Chapter	3)	

	
Assigned	on	9/19/2017	

Due	in	class	on	10/5/2017	
	
Instructions:	

1. Please	write	your	name	and	NetID	clearly	on	the	first	page.	
2. Refer	to	the	course	fact	sheet	for	policies	on	collaboration.	
3. Due	IN	CLASS	on	10/5/2017.	

	
	
	
Problem	1	[40	points]	
This	problem	concerns	Tomasulo’s	algorithm.		Consider	the	following	architecture	specification:	
	

Functional	Unit	Type	 Cycles	in	EX	 Number	of	
Functional	Units		

Integer	 1		 1		
FP	Adder	 5		 1		
FP	Multiplier		 8	 1		
FP	Divider		 15	 1		
	

1) Assume	that	you	have	unlimited	reservation	stations.	
2) IS	and	WB	take	one	cycle	each.	
3) One	Instruction	is	issued	per	cycle.	
4) Memory	accesses	use	the	integer	functional	unit	to	perform	effective	address	

calculation	during	the	EX	stage.	
5) For	stores,	memory	is	accessed	during	the	EX	stage	(Tomasulo’s	algorithm	without	

speculation)	or	commit	stage	(Tomasulo’s	algorithm	with	speculation).	
6) All	loads	access	memory	during	the	EX	stage.	
7) Loads	and	Stores	stay	in	EX	for	one	cycle.	
8) Functional	units	are	not	pipelined.	
9) If	an	instruction	moves	to	its	WB	stage	in	cycle	x,	then	an	instruction	that	is	waiting	on	

the	same	functional	unit	(due	to	a	structural	hazard)	can	start	executing	in	cycle	x.		
10) An	instruction	waiting	for	data	on	the	CDB	can	move	to	its	EX	stage	in	the	cycle	after	the	

CDB	broadcast.	
11) Only	one	instruction	can	write	to	the	CDB	in	one	clock	cycle.	
12) Branches	and	stores	do	not	need	the	CDB.	
13) Whenever	there	is	a	conflict	for	a	functional	unit	or	the	CDB,	assume	that	the	oldest	(by	

program	order)	of	the	conflicting	instructions	gets	access,	while	others	are	stalled.	



14) Assume	that	the	result	from	the	integer	functional	unit	is	also	broadcast	on	the	CDB	and	
forwarded	to	dependent	instructions	through	the	CDB	(just	like	any	floating	point	
instruction).	

15) Assume	that	the	BNEQZ	occupies	the	integer	functional	unit	for	its	computation	and	
spends	one	cycle	in	EX.	

	
Part	A	[10	points]	
Fill	in	the	table	below	with	the	cycle	number	where	each	instruction	occupies	the	given	stage.		
If	a	stall	occurs,	describe	the	reason	for	the	stall.		The	reason	should	include	the	type	of	hazard;	
registers,	functional	units,	etc.	that	caused	the	dependence;	and	the	instruction	on	which	the	
given	instruction	is	dependent	(use	the	IS	stage	cycle	number	to	identify	the	instruction).	The	
first	two	entries	are	given.	
	
Instruction		 IS		 EX	 WB	 Reason	for	stalls	
L.D	F0,	0(R1)		 1	 2	 3	 	
ADD.D	F2,	F0,	F4		 2	 4-8	 9	 RAW	on	F0	(from	1)		
MUL.D	F4,	F2,	F6		 3	 17-24	 25	 RAW	on	F2	(from	2);	Structural	hazard	for	FP	

Multiplier	(from	7)	
ADD.D	F6,	F8,	F10		 4	 9-13	 14	 Structural	hazard	for	FP	Adder	(from	2)	
DADDI	R1,	R1,	#8		 5	 6	 7	 		
L.D	F1,	0(R2)		 6	 7	 8	 	
MUL.D	F1,	F1,	F8		 7	 9-16	 17	 RAW	on	F1	(from	6)	
ADD.D	F6,	F3,	F5		 8	 14-18	 19	 Structural	hazard	for	FP	Adder	(from	4)	
DADDI	R2,	R2,	#8		 9	 10	 11	 	
	
	 	



	
	
Part	B	[2	points]		
Would	pipelining	any	of	the	functional	units	reduce	the	total	execution	time	of	the	above	code	
segment?		If	so,	find	an	example	from	the	code	and	explain.		Otherwise,	explain	why.	
	
[Answer]	Yes.		Stalls	due	to	structural	hazards	can	be	avoided	or	shortened.		For	example,	by	
pipelining	FP	Multiplier,	the	first	MUL.D	instruction	can	start	execution	at	the	cycle	10.	
	
Part	C	[2	points]		
Would	adding	another	multiplier	functional	unit	be	more	advantageous	than	pipelining	the	
multiplier	for	the	above	code	segment?	Explain	your	answer.		
	
[Answer]	No.		As	two	MUL.D	instructions	get	ready	for	the	EX	stage	(i.e.,	resolve	data	
dependences)	at	different	cycles,	an	additional	multiplier	functional	unit	does	not	provide	extra	
benefit	over	pipelining	the	existing	one.		
	 	



Part	D	[18	points]		
For	this	part,	assume	hardware	speculation	and	dual-issue	added	to	the	Tomasulo	pipeline	you	
used	for	the	part	A.		That	is,	assume	that	an	instruction	can	issue	even	before	the	branch	has	
completed	(or	started)	its	execution	(as	with	perfect	branch	and	target	prediction).		However,	
assume	that	an	instruction	after	a	branch	cannot	issue	in	the	same	cycle	as	the	branch;	the	
earliest	it	can	issue	is	in	the	cycle	immediately	after	the	branch	(to	give	time	to	access	the	
branch	history	table	and/or	buffer).		Any	other	pair	of	instructions	can	issue	in	the	same	cycle.		
Assume	that	a	store	calculates	its	target	address	in	EX	and	performs	its	memory	access	during	
the	Commit	stage.		Recall	that	stores	do	not	write	back.		
Additionally,	assume	that	your	reorder	buffer	has	12	entries	(at	the	beginning	of	execution,	the	
ROB	is	empty).		Furthermore,	two	instructions	can	commit	each	cycle.		
Fill	in	the	cycle	numbers	in	each	pipeline	stage	for	each	instruction	in	the	first	two	iterations	of	
the	loop	represented	below,	assuming	the	branch	is	always	taken.		The	entries	for	the	first	two	
instructions	of	the	first	iteration	are	filled	in	for	you.		CM	stands	for	the	commit	stage.	
	
Instruction	 IS	 EX	 WB	 CM	 Reason	for	stalls	
Iteration	1	 	 	 	 	 	
LP:	L.D	F0,	0(R1)	 1	 2	 3	 4	 	
						ADD.D	F0,	F0,	F6	 1	 4-8	 9	 10	 RAW	on	F0	(from	1)	
						DIV.D	F2,	F2,	F0	 2	 20-

34	
35	 36	 RAW	on	F0	(from	1);	Structural	hazard	

for	FP	Divider	(from	3)	
						L.D	F0,	8(R1)	 2	 3	 4	 36	 	
						DIV.D	F4,	F0,	F8	 3	 5-19	 20	 37	 RAW	on	F0	(from	2)	
						S.D	F4,	16(R1)	 3	 4	 	 37	 	
						DADDI	R1,	R1,	#-24	 4	 5	 6	 38	 	
						BNEZ	R1,	LP	 4	 7	 	 38	 RAW	on	R1	(from	4)	
Iteration	2	 	 	 	 	 	
LP:	L.D	F0,	0(R1)	 5	 8	 10	 39	 RAW	on	R1	(from	4);	Structural	hazard	

for	Integer	(from	4);	Structural	hazard	
for	CDB	(from	1)	

						ADD.D	F0,	F0,	F6	 5	 11-
15	

16	 39	 RAW	on	F0	(from	5)	

						DIV.D	F2,	F2,	F0	 6	 50-
64	

65	 66	 RAW	on	F0	(from	5);	Structural	hazard	
for	FP	Divider	(from	7)	

						L.D	F0,	8(R1)	 6	 9	 11	 66	 Structural	hazard	for	Integer	(from	5);	
Structural	hazard	for	CDB	(from	5)	

						DIV.D	F4,	F0,	F8	 7	 35-
49	

50	 67	 Structural	hazard	for	FP	Divider	(from	2);	

						S.D	F4,	16(R1)	 11	 12	 	 67	 ROB	full	(from	1)	
						DADDI	R1,	R1,	#-24	 37	 38	 39	 68	 ROB	full	(from	2)	
						BNEZ	R1,	LP	 37	 40	 	 68	 RAW	on	R1	(from	37)	
	
	



Part	E	[6	Points]		
For	the	code	in	the	part	D,	which	of	the	following	optimizations	will	cause	a	performance	
improvement	of	at	least	one	cycle	per	loop	iteration:	(1)	triple	issue,	(2)	three	instruction	
commits	per	cycle,	or	(3)	reorder	buffer	of	size	14?		Explain	why.	
	
[Answer]	
(1)	Triple	issue	causes	the	fifth	instruction	to	be	fetched	at	the	cycle	2,	but	EX	still	has	to	start	in	
the	cycle	5	due	to	the	data	dependence.		Since	DIV	unit’s	latency	causes	the	same	bottleneck	as	
before,	there	will	not	be	any	overall	improvement.	
(2)	Triple	commit	causes	the	first	loop	to	end	in	37	cycles	and	the	second	loop	to	finish	by	the	
end	of	the	67th	cycle,	hence	giving	an	improvement	of	1	cycle	per	iteration.	
(3)	Increased	reorder	buffer	again	causes	more	instructions	to	be	fetched,	but	they	cannot	
commit	until	DIV	instructions	complete	and	commit.		Hence	there	will	not	be	any	improvement.	
	
Part	F	[2	Points]		
For	the	code	in	the	part	D,	assume	a	floating	point	division	by	0	incurs	an	exception.		In	which	
clock	cycle	will	the	system	invoke	a	jump	to	the	interrupt	service	routine	if	F8	used	in	the	fifth	
instruction	has	the	value	0?		Assume	that	the	exception	is	identified	as	soon	as	EX	begins	and	
the	instruction	with	the	exception	gives	up	the	execution	unit	in	the	same	cycle	(i.e.,	it	is	
available	for	another	instruction	in	the	next	cycle).		Explain	your	answer.	
	
[Answer]	
The	interrupt	will	be	identified	at	the	cycle	5	and	the	FP	Divider	will	be	ready	for	other	
instructions	at	the	cycle	6.		Thus,	the	third	instruction	runs	from	the	cycle	6	until	the	cycle	20.		
Then,	the	third	and	fourth	instruction	will	commit	at	the	cycle	22.		Finally,	the	fifth	instruction	
will	commit	at	the	cycle	23,	and	the	system	invokes	a	jump	to	the	ISR	at	the	cycle	23.	
	
	 	



Problem	2	[10	points]	
Consider	the	following	MIPS	code.		The	register	R0	is	always	0.	
	

ADD.D	R1,	R0,	R0	
	

L1:	 ADD.D	R2,	R0,	R0	
	
L2:	 DADDI	R2,	R2,	#1	

DSUBI	R3,	R2,	#3	
BNEQZ	R3,	L2	 	 <--	Branch	1	
	
DADDI	R1,	R1,	#1	
DSUBI	R4,	R1,	#4	
BNEQZ	R4,	L1	 	 <--	Branch	2	

	
Each	table	below	refers	to	each	branch.		For	instance,	the	branch	1	will	be	executed	12	times,	
and	those	12	times	should	be	recorded	in	the	table	for	the	branch	1.		Similarly,	the	branch	2	is	
executed	4	times.	
	
Part	A	[4	points]		
Assume	that	1-bit	branch	predictors	are	used.		When	the	processor	starts	to	execute	the	above	
code,	both	predictors	contain	value	N	(Not	taken).		What	is	the	number	of	correct	predictions?		
Fill	the	following	tables	to	record	the	prediction	and	action	of	each	branch.		
	
Step	 Branch	1	Prediction	 Actual	Branch	1	Outcome	
1	 N	 T	
2	 T	 T	
3	 T	 N	
4	 N	 T	
5	 T	 T	
6	 T	 N	
7	 N	 T	
8	 T	 T	
9	 T	 N	
10	 N	 T	
11	 T	 T	
12	 T	 N	
	
Step	 Branch	2	Prediction	 Actual	Branch	2	Outcome	
1	 N	 T	
2	 T	 T	
3	 T	 T	
4	 T	 N	



Part	B	[6	Points]		
Now	assume	that	2-bit	saturation	counters	are	used.		When	the	processor	starts	to	execute	the	
above	code,	both	counters	contain	value	0.		What	is	the	number	of	correct	predictions?		Fill	the	
following	tables	to	record	the	prediction	and	action	of	each	branch.	
	
Step	 Counter	Values	 Branch	1	Prediction	 Actual	Branch	1	Outcome	
1	 00	 N	 T	
2	 01	 N	 T	
3	 11	 T	 N	
4	 10	 T	 T	
5	 11	 T	 T	
6	 11	 T	 N	
7	 10	 T	 T	
8	 11	 T	 T	
9	 11	 T	 N	
10	 10	 T	 T	
11	 11	 T	 T	
12	 11	 T	 N	
	
Step	 Counter	Values	 Branch	2	

PredictionActual	Branch	
2	Outcome	

1	 00	 N	 T	
2	 01	 N	 T	
3	 11	 T	 T	
4	 11	 T	 N	
	 	



Problem	3	[10	Points]		
Suppose	we	have	a	deeply	pipelined	processor,	for	which	we	implement	a	branch	target	buffer	
(BTB)	for	conditional	branches	only.		Assume	the	followings:	

(1) 15%	of	the	total	instructions	are	conditional	branches.	
(2) the	BTB	hit	rate	is	90%.	
(3) the	BTB	miss	penalty	is	always	3	cycles.	
(4) even	if	hit	on	the	BTB,	if	the	prediction	was	incorrect,	there	is	a	4-cycle	penalty.	
(5) the	branch	prediction	accuracy	is	90%.	
(6) the	base	CPI	without	branch	stall	is	1.	

		
Part	(A)	[5	points]		
How	much	faster	is	this	processor	compared	to	a	processor	that	does	not	have	a	branch	
predictor	and	has	a	fixed	two-cycle	branch	penalty?	
	
Without	a	branch	prediction	and	a	fixed	two-cycle	branch	penalty,	
CPI_NO_PREDICT	=	1	+	0.15	*	2	=	1.3	
With	a	branch	prediction	and	a	BTB,	
CPI_BTB	=	1	+	0.15	*	0.1	*	3	+	0.15	*	0.9	*	0.1	*	4	=	1	+	0.045	+	0.054	=	1.099	
Speedup	=	CPI_NO_PREDICT	/	CPI_BTB	=	1.3	/	1.099	=	1.18	
	
[Answer]	1.18	
	
Part	(B)	[5	points]		
For	this	part,	let’s	assume	that	the	BTB	is	extended	to	store	one	target	instruction	and	used	to	
convert	an	unconditional	branch	into	the	target	instruction	at	the	IF	stage	(i.e.,	branch	folding).		
Also,	assume	that	10%	of	the	total	instructions	are	unconditional	branches	and	an	
unconditional	branch	originally	takes	1	cycle	to	execute	without	the	BTB.		Calculate	the	CPI	with	
the	extended	BTB.	
	
With	branch	folding,	if	an	unconditional	branch	hits	in	the	BTB,	it	will	be	converted	into	the	
target	instruction	and	it	will	not	be	counted	toward	CPI.	
	
CPI_BTB_EXTENDED	=	CPI_BTB	–	0.1	*	0.9	=	1.18	–	0.09	=	1.09	
	
[Answer]	1.09	
	 	



Problem	4	(for	graduate	students	only)	[10	points]		
This	problem	concerns	the	implications	of	the	reorder	buffer	size	on	performance.		Consider	a	
processor	implementing	Tomasulo’s	algorithm	with	reservation	stations	and	the	reorder	buffer	
scheme	as	described	in	the	lecture	notes.		Assume	infinite	processor	resources	unless	stated	
otherwise	(e.g.,	infinite	execution	units	and	infinite	reservation	stations).		Assume	a	perfect	
branch	predictor	and	assume	there	are	no	data	dependence	in	the	instruction	stream	we	are	
considering.		Assume	the	maximum	instruction	fetch	rate	is	12	instructions	per	cycle.		The	other	
stages	in	the	pipeline	have	no	constraints	(e.g.,	the	processor	can	decode	an	unbounded	
number	of	instructions	per	cycle).	
	
Part	(A)	[2	points]		
Suppose	all	instructions	take	one	cycle	to	execute	and	the	processor	has	an	infinite	reorder	
buffer.		What	is	the	average	instructions-per-cycle	rate	(IPC)	of	this	processor?		Explain	why.	
	
[Answer]	
The	average	IPC	would	be	12	since	it	is	limited	only	by	the	fetch	rate.		There	is	no	reason	for	any	
stall	since	there	are	no	data	dependence	or	branch	misprediction	and	we	have	infinite	
resources.	
	
Part	(B)	[3	points]		
Consider	the	system	in	the	part	A	except	that	now	every	48th	instruction	is	a	load	that	misses	in	
the	cache	and	the	miss	latency	is	500	cycles.		What	is	the	average	IPC	of	this	processor?		Explain	
why.	
	
[Answer]	
The	average	IPC	would	again	be	12.		The	ROB	would	mask	out	the	latencies	associated	with	
missing	load	instructions,	and	would	allow	us	to	keep	fetching	and	issuing	12	instructions	each	
cycle.		The	misses	would	introduce	a	lag	of	up	to	500	cycles	between	the	fetch	and	commit,	but	
the	average	throughput	would	still	be	12	instructions	each	cycle.	
	 	



Part	(C)	[5	points]		
Consider	the	system	in	the	part	B	except	that	now	the	reorder	buffer	size	is	48	entries.	What	is	
the	average	IPC	for	this	processor?		If	the	IPC	is	less	than	12,	then	what	is	the	smallest	reorder	
buffer	size	for	which	the	IPC	will	be	12	again	(assume	the	reorder	buffer	size	can	only	be	a	
multiple	of	12).	
	
[Answer]	
We	can	no	longer	get	an	IPC	of	12	since	the	limited	ROB	size	will	cause	stalls.		Suppose	that	at	
cycle	1,	we	issue	a	load	that	misses.		We	would	keep	fetching	and	issuing	instructions	until	the	
ROB	becomes	full,	so	we	would	issue	47	more	instructions	and	then	stall,	until	cycle	500,	when	
the	instruction	at	the	head	of	the	ROB	completes	and	is	ready	to	commit	(along	with	the	other	
47	instructions).		At	that	point,	we	would	issue	the	next	missing	load,	and	this	cycle	would	
repeat.		Thus,	every	500	cycles,	we	can	commit	48	instructions,	and	the	IPC	will	be	48/500.		To	
obtain	an	average	IPC	of	12,	we	need	to	be	able	to	overlap	the	execution	of	12	instructions	per	
cycle	on	average	during	the	500	cycles	for	which	the	load	is	stalled.		These	instructions	cannot	
commit	until	the	load	commits.		This	requires	an	ROB	size	of	12*500=6000	instructions.	
	


