
CS433	Homework	1	
(Chapter	1,	Appendix	C)	

	
Assigned	on	9/5/2017	

Due	in	class	on	9/19/2017	
	
Instructions:	

1. Please	write	your	name	and	NetID	clearly	on	the	first	page.	
2. Refer	to	the	course	fact	sheet	for	policies	on	collaboration.	
3. Due	IN	CLASS	on	9/19/2017.	

	
	
	
Problem	1	[10	points]	
You	are	running	a	program	of	which	the	expected	gain	is	inversely	proportional	to	the	
execution	time	(e.g.,	cryptocurrency	mining).		In	other	words,	the	faster	you	run	the	program,	
the	more	money	you	earn.		Assume	that	(i)	the	serial	execution	of	the	program	takes	
20	minutes	(ii)	80%	of	the	program	is	parallelizable	(iii)	the	parallelizable	part	is	embarrassingly	
parallel	so	that	it	can	be	evenly	distributed	to	any	number	of	cores	(iv)	the	expected	gain	is	
$10	/	(Execution	time	in	seconds)	and	(v)	the	cost	of	operation	per	core	is	$0.01	per	hour.	
	
Part	A	[4	points]	
Given	infinite	resource,	what	is	the	shortest	execution	time	possible?	
	
Part	B	[6	points]	
How	many	cores	would	you	use	to	maximize	the	profit?		What	is	the	maximum	profit	possible	
from	a	single	run	of	the	program?	
	 	

Problem	2	[10	points]	
You	are	evaluating	the	performance	of	a	processor	without	pipelining	which	runs	at	1	GHz.		The	
table	shows	latencies	of	different	instruction	types	and	the	number	of	instructions	of	each	type	
in	the	benchmark	program.	
	
Instruction	Type	 Latency	 #	of	instructions	in	the	Benchmark	Program	
Memory	 5	cycles	 40,000,000	
Branch	 4	cycles	 20,000,000	
ALU	 4	cycles	 30,000,000	
I/O	 10	cycles	 10,000,000	
	
Part	A	[3	points]	
Calculate	(i)	the	execution	time	(ii)	CPI	and	(iii)	MIPS	of	the	processor	running	the	benchmark	
program.	
	
Part	B	[6	points]	
You	found	out	that	the	application	often	jumps	to	an	instruction	address	stored	in	the	memory.		
To	optimize	for	this	case,	you	are	adding	a	new	instruction	which	combines	a	load	instruction	
and	a	branch	instruction.		The	new	instruction	takes	7	cycles	and	can	be	applied	to	40%	of	
branch	instructions.		Note	that	you	can	replace	two	original	instructions	(a	load	and	a	branch)	
with	one	new	instruction.		Calculate	(i)	the	execution	time	(ii)	CPI	and	(iii)	MIPS	of	the	processor	
enhanced	with	the	new	instruction.	
	
	
	
Problem	3	[10	points]	
Identify	the	RAW,	WAW	and	WAR	dependences	(potential	data	hazards)	in	the	code	below.		
State	whether	the	dependence	will	cause	a	stall.		Consider	a	5-stage	RISC	pipeline	with	IF	ID	EX	
MEM	WB	stages	as	in	Appendix	C.		Branches	are	resolved	in	the	ID	stage.		All	stages	take	1	
cycle.		Assume	full	forwarding.	
	
1: ADD R1, R2, R3
2: LD R4, 0(R1)
3: ADD R1, R4, R5
4: SUB R4, R6, R7
5: BEQZ R4, done
	
	
	
	
	
	
	

Problem	4	[10	points]	
We	will	add	support	for	register-memory	ALU	instructions	to	the	classic	5-stage	RISC	pipeline.		
For	example,	the	register-memory	instruction	ADD R4,R5,(R1)	means	adding	the	content	
of	the	register	R5	to	the	content	of	the	memory	location	of	the	address	equal	to	the	value	in	
the	register	R1	and	putting	the	sum	into	the	register	R4.		Register-register	ALU	instructions	are	
unchanged.		To	offset	this	increase	in	complexity,	all	memory	instructions	(including	original	
load/store	instructions	and	new	register-memory	ALU	instructions)	will	be	limited	to	register	
indirect	addressing	(i.e.,	an	address	can	only	be	provided	as	a	variable	held	in	a	register	and	
separate	instructions	are	needed	to	calculate	the	effective	address	and	put	it	into	the	register).	
	
Part	A	[1	point]	
List	a	rearranged	order	of	the	five	traditional	stages	of	the	RISC	pipeline	that	will	support	
register-memory	instructions.	
	
Part	B	[3	points]	
Describe	what	forwarding	paths	are	needed	for	the	rearranged	pipeline	by	stating	the	source,	
destination,	and	when	that	path	is	used.		Include	forwarding	paths	which	were	also	necessary	in	
the	original	design.	
	
Part	C	[2	points]	
For	the	reordered	stages	of	the	RISC	pipeline,	what	new	data	hazards	are	created	by	this	
addressing	mode?		Give	an	instruction	sequence	illustrating	each	new	hazard.	
	
Part	D	[2	points]	
Show	that	the	RISC	pipeline	with	register-memory	ALU	instructions	can	take	more	or	fewer	
instruction	for	a	given	program	than	the	original	RISC	pipeline.		Find	an	instruction	sequence	for	
the	new	architecture	that	is	shorter	than	any	equivalent	sequence	of	instructions	on	the	old	
architecture,	and	an	instruction	sequence	for	the	old	architecture	that	is	shorter	than	any	
equivalent	instruction	sequence	on	the	new	architecture.	
	
Part	E	[2	points]	
Assume	all	instructions	take	1	clock	cycle	per	stage.		Many	instructions	are	common	to	both	
architectures,	but	even	compatible	programs	may	have	different	performance.		Give	one	
compatible	instruction	sequence	which	will	run	with	a	higher	CPI	on	the	new	design	than	on	the	
original	pipeline,	and	one	instruction	sequence	which	will	run	with	a	lower	CPI	on	the	new	
design.	
	
	
	
	
	
	
	

Problem	5	(for	graduate	students	only)	[10	points]	
Consider	three	different	5-stage	RISC	pipeline	machines	with	IF	ID	EX	MEM	WB	stages.		The	first	
machine	has	an	oracle	branch	predictor	which	always	predicts	the	correct	target.		In	other	
words,	there	is	no	stall	due	to	branch	misprediction.		The	second	machine	resolves	branches	in	
the	EX	stage	using	a	predict-not-taken	scheme.		The	third	machine	resolves	branches	in	the	ID	
stage	using	one	branch	delay	slot.		Assume	that	(i)	the	first	machine’s	CPI	is	1	(ii)	they	run	at	the	
same	frequency	(iii)	20%	of	the	instructions	are	branches	(iv)	25%	of	branches	are	taken	and	(v)	
stalls	are	due	to	branches	alone.	
	
Part	A	[4	points]	
Calculate	the	CPI	of	the	second	machine.	
	
Part	B	[4	points]	
Assuming	that	the	compiler	is	able	to	fill	30%	of	the	delay	slots	with	useful	instructions,	
calculate	the	CPI	of	the	third	machine.	
	
Part	C	[2	points]	
What	percentage	of	delay	slots	should	be	filled	with	useful	instructions	for	the	third	machine	so	
that	the	third	machine	run	faster	than	the	second	machine?	

