Homework 1

Problem 0 [4 points]

Choose the correct answer for the following multiple-choice questions:

0.0) You are offered old homework solutions by a student who formerly took this class. You should:
 a. Accept the solutions because no one will ever know.
 b. Not even look at the solutions because that is the honor code set for this class.
 c. Accept the solutions because you don’t really want to learn anything in this class. You are simply taking it to fulfill a requirement.

0.1) While working with a partner on a homework assignment, one of your classmates asks if he/she can also work with you. You should:
 a. Tell the other student that you already have a partner for this homework assignment.
 b. Agree to work with the other student, but only on the portion of the homework you have not yet completed.
 c. Apologize for having found a partner too early and offer to send the other student a completed copy of your homework.

0.2) Suppose you and your partner are overwhelmed with work at the time the homework is due. You should:
 a. Have your partner do half the problems, you do the other half, and combine your solutions.
 b. Complain about your course load to everyone you meet.
 c. Think ahead and email Professor Adve for an extension within 48 hours of when the homework is handed out.

0.3) You and your partner have discussed all the problems and their solutions. You then independently finish writing up your solutions for submission. Your partner texts you that s/he is
running out of time to write up her/his solutions because there is a midterm the next day and asks you for your writeup as an aid. You should:

a. Give your partner your writeup. After all, you already discussed the solutions with her/him earlier.
b. Not give your writeup because the honor code requires both partners to independently write the solutions.
c. Not give your writeup, but be available to help your partner as she/he writes up her/his submission.

Solution: 0.0) b, 0.1) a, 0.2) c, 0.3) b

Grading: 1 point for each answer.

Problem 1 [5 points]:

Part (A) [2 points]

Assume a new execution mode called “enhanced mode” provides a 2.5x speedup to the sections of programs where it applies. What percentage of a program (measured by original execution time) must run in enhanced mode for an overall speedup of 10%?

Solution:

Let f be the required fraction.

\[
\frac{T_{old}}{T_{new}} = 1.1
\]

\[
\frac{T_{old}}{(1 - f) + \frac{f}{2.5} \times T_{old}} = 1.1
\]

\[
\frac{1}{1 - \frac{3f}{5}} = 1.1
\]

\[
\frac{3f}{5} = 1 - \frac{1}{1.1}
\]

\[
f = 0.152 \text{ or } 15.2\%
\]

Grading:

½ point for writing the correct ratio. 1 point for writing the correct equation for T_{new}. ½ point for simplification.
Part (B) [1 point]

For the program identified in Part (A), what is the maximum possible speedup with an ideal enhanced mode (i.e. the identified percentage of the program is sped up infinitely)?

Solution:

$$Speedup_{\text{infinity}} = \frac{1}{1 - 0.152} = 1.18$$

Grading:

1 point for setup of equation.

Part (C) [2 points]

Two enhancements are proposed: one that can enhance 40% of execution time with a speedup of 1.5, and another that can enhance a different 25% of execution time with some greater speedup value. Only one of these two can be implemented. How much of a speedup is necessary in the second enhancement to give a better enhancement than the first?

Solution:

$$T_{new1} \geq T_{new2}$$

$$0.6 + \frac{0.4}{1.5} \geq 0.75 + \frac{0.25}{s}$$

$$\frac{7}{60} \geq \frac{0.25}{s}$$

$$s \geq \frac{15}{7} \text{ or } 2.14$$

Grading:

1 point each for writing the correct time for each enhancement.
Problem 2 [3 points]

Several researchers have suggested that adding a register-memory addressing mode to a load-store machine might be useful. The idea is to replace sequences of

\[
\text{LOAD R1, 0(Rb)}
\]
\[
\text{ADD R2, R2, R1}
\]

with

\[
\text{ADD R2, 0(Rb)}
\]

Assume that the new instruction will cause the clock cycle time to increase by 5% and will not affect the CPI. Also, assume loads constitute 25.1% of all instructions. What percentage of the loads must be eliminated for the machine with the new instruction to have at least the same performance?

Solution:

Let \(x \) be the fraction of loads that are eliminated. This means that 0.251\(x \) of all instructions are eliminated.

\[
\begin{align*}
\text{CPU time}_{old} &= \# \text{ of instructions} \times \text{CPI} \times \text{cycle time} \\
\text{CPU time}_{new} &= \left(1 - 0.251 \times \text{L}\right) \times \# \text{ of instructions} \times \text{CPI} \times \left(1 + .05\right) \times \text{cycle time} \\
\text{CPU time}_{new} &\leq \text{CPU time}_{old} \\
\left(1 - 0.251 \times \text{L}\right) \times 1 \times 1.05 &\leq 1 \\
0.251 \times \text{L} &\geq 1 - \frac{1}{1.05} \\
\text{L} &\geq 0.19 \text{ or } 19\%
\end{align*}
\]

Grading:

1 point for the basic time equation. 2 points for setting up the equation correctly to solve the problem. No deductions for calculation mistakes.
Problem 3 [3 points]

Consider a 2.4 cm2 die for a 64-bit processor manufactured from a 42 cm-diameter wafer costing $9,000. Assume a wafer yield of 99%. Use the defect model from the lecture notes with 0.06 defects per cm2 and $\alpha=9.5$. What is the expected cost per die (before testing)? Ignore edge effect correction.

Solution:

The given equation for die yield is:

$$\text{Die yield} = \text{Wafer yield} \times \left(1 + \text{(Defects per unit area} \times \text{Die area})\right)^{-\alpha}$$

Plugging in, we get:

$$\text{Die yield} = 0.99 \times \left(1 + (0.06 \times 2.4)\right)^{-9.5} = 0.276$$

Now we need to calculate the number of dies per wafer:

$$\text{Dies per wafer} = \frac{\pi \times \left(\frac{\text{wafer diameter}}{2}\right)^2}{\text{Die area}}$$

$$\text{Dies per wafer} = \frac{\pi \times \left(\frac{42}{2}\right)^2}{2.4} = 577.27 \text{ (rounding down to 577 is OK)}$$

Finally, we can figure out the cost per die based on the above calculations:

$$\text{Cost per die} = \frac{\$9000}{0.276 \times 577.27} \approx \$56.5$$

Grading:

1 point for setting up the die yield equation properly. 1 point for setting up the dies per wafer equation correctly. 1 point for setting up the cost of die equation correctly. No deductions for calculation mistakes.
Problem 4 [3 points]

Suppose a processor uses 95W of power while operating at 3 GHz, of which 3/4 is dynamic power. Suppose we want to run the same processor at a higher frequency which requires increasing the operating voltage proportionally as well. If a dynamic power consumption increase of up to 125W can be tolerated, by how much can the processor frequency be sped up?

Solution:

Total power consumption is broken down into the static and dynamic power components:

\[\text{Power} = \text{Dynamic Power} + \text{Static Power} \]

From the problem statement, we know that Power = 95 W, and Dynamic Power is \(\frac{3}{4} \) of this:

\[\text{Dynamic Pow} = \frac{3}{4} \times 95 W = 71.25 W \]

The new dynamic power consumption is 125 W. Since the capacitance is constant, we ignore it in our calculations. Let \(x \) be the speedup:

\[F' = F \times x \]
\[V' = V \times x \]

Using the equation for dynamic power:

\[\text{Dynamic Power}_{\text{new}} = V'^2 \times F' \]
\[\text{Dynamic Power}_{\text{new}} = (V \times x)^2 \times (F \times x) \]
\[\text{Dynamic Power}_{\text{new}} = x^3 \times V^2 \times F \]

\[\text{Dynamic Power}_{\text{new}} = x^3 \times \text{Dynamic Power}_{\text{old}} \]

\[x^3 = \frac{\text{Dynamic Power}_{\text{new}}}{\text{Dynamic Power}_{\text{old}}} \]

\[x^3 = \frac{125}{71.25} = 1.75 \]

\[x = \sqrt[3]{1.75} = 1.206 \text{ or } 20.6\% \]

Grading:

1 point for finding new dynamic power. 1 point for listing correct dynamic power equation. 1 point for finding speedup. No deductions for calculation mistakes.
Problem 5 [3 points]

Consider a server farm of 1,500 identical components where a single failure causes the entire system to crash. If each component has an MTTF of 125 days, what is the MTTF of the entire farm? Assume an exponential distribution for component time to failure.

Solution:

FIT of one server = 1/125

FIT of entire farm =\[1500 \times \left(\frac{1}{125}\right) = 12\]

MTTF of entire farm = \[\frac{1}{FIT \ of \ farm} = \frac{1}{12} \text{ days} = \frac{1}{12} \times 24 \times 60 \text{ minutes} = 120 \text{ minutes}\]

Grading:

1 point for each of the three equations. No deductions for calculation mistakes.