
University of Illinois at Urbana-Champaign Page 1

CS 326 Lecture 3 – Context Free Grammars

Context-free Grammars
Def: A Context-free Grammar (CFG) is a 4-tuple

G=(N, Σ, P, S)
where:
1. N is a finite, nonempty set of symbols (non-terminals)
2. Σ is a finite set of symbols (terminals)
3. N ∩ Σ =
4. V≡ N∪ Σ (vocabulary)
5. S ∈ N (Goal symbol or start symbol)
6. P is a finite subset of N × V* (Production rules).

Sometimes written as G=(V, Σ, P,S), N = V \ Σ.

University of Illinois at Urbana-Champaign Page 2

CS 326 Lecture 3 – Context Free Grammars

Example Grammar: Arithmetic Expressions
G = (N, Σ, P, E) where:

 N = { E, T, F}
 Σ = { (,), +, *, id}
 P = { E →T

 E → E + T
 T → F
 T → T*F
 F → id
 F → (E) }

Note: P ⊆ NxV*, where
V = N ∪ Σ = { E,T,F,C,(,),+,*,id}

Note: (A, α) ∈ P is usually written
A → α

or A :: = α
or A : α

University of Illinois at Urbana-Champaign Page 3

CS 326 Lecture 3 – Context Free Grammars

Derivations of a Grammar
Directly Derives or ⇒:

If α and β are strings in V* (vocabulary), then α directly derives β
(written α ⇒ β) iff there is a production A→δ s.t.
– A is a symbol in α
– Substituting string δ for A in α produces the string β

Canonical Derivation Step:
The above derivation step is called rightmost if A is the rightmost

non-terminal in α. (Similarly, leftmost.)
A rightmost derivation step is also called canonical.

University of Illinois at Urbana-Champaign Page 4

CS 326 Lecture 3 – Context Free Grammars

Derivations and Sentential Forms
Derivation:

A sequence of steps α0 ⇒ α1 ⇒ α2 ⇒ … ⇒ αn where α0 = S is
called a derivation. It is written S ⇒* αn
If every derivation step is rightmost, then this is a canonical

derivation.

Sentential Form
Each αi in a derivation is called a sentential form of G.

Sentences and the Language L(G)
A sentential form αi consisting only of tokens (i.e., terminals) is called

a sentence of G.
The language generated by G is the set of all sentences of G. It is

denoted L(G).

University of Illinois at Urbana-Champaign Page 5

CS 326 Lecture 3 – Context Free Grammars

Parse Trees of a Grammar
A Parse Tree for a grammar G is any tree in which:
• The root is labeled with S
• Each leaf is labeled with a token a (a ∈ Σ) or ε (the empty string)
• Each interior node is labeled by a non-terminal.
• If an interior node is labeled A and has children labeled X1…Xn , then

A → X1…Xn is a production of G
• If A → ε is a production in G, then a node labeled A may have a single

child labeled ε

The string formed by the leaf labels (left to right) is the yield of the parse
tree.

University of Illinois at Urbana-Champaign Page 6

CS 326 Lecture 3 – Context Free Grammars

Parse Trees (continued)
• An intermediate parse tree is the same as a parse tree except the

leaves can be non-terminals.

Notes:
• Every α ∈ L(G)is the yield of some parse tree. Why?
• Consider a derivation, S ⇒ α1 ⇒ α2 ⇒ … ⇒ αn , where αn ∈ L(G)

For each αi, we can construct an intermediate parse tree.
The last one will be the parse tree for the sentence αn .

• A parse tree ignores the order in which symbols are replaced to derive
a string.

University of Illinois at Urbana-Champaign Page 7

CS 326 Lecture 3 – Context Free Grammars

Derivations and Parse Trees
id * id

E ⇒ T ⇒ T * F ⇒ T * id ⇒ F * id ⇒ id * id

T

T F

id *
id

E

F

T

T F

*
id

E

F

T

T F

E

*

University of Illinois at Urbana-Champaign Page 8

CS 326 Lecture 3 – Context Free Grammars

Uniqueness of Derivations
Derivations and Parse Trees
• Every parse tree has a unique derivation: Yes? No?
• Every parse tree has a unique rightmost derivation: Yes? No?
• Every parse tree has a unique leftmost derivation: Yes? No?

Derivations and Strings of the Language
• Every u ∈ L(G) has a unique derivation: Yes? No?
• Every u ∈ L(G) has a unique rightmost derivation: Yes? No?
• Every u ∈ L(G) has a unique leftmost derivation: Yes? No?

University of Illinois at Urbana-Champaign Page 9

CS 326 Lecture 3 – Context Free Grammars

Ambiguity
Def. A grammar, G, is said to be unambiguous if ∀ u ∈ L(G), ∃

exactly one canonical derivation S ⇒* u. Otherwise, G is said to be
ambiguous.

E.g., Grammar: E → E + E | E * E | (E) | id
 Two parse trees for u = id + id * id

E

E E

E E

id + id *
id

E

EE

EE

id + id *
id

These are different syntactic interpretations of the input code

University of Illinois at Urbana-Champaign Page 10

CS 326 Lecture 3 – Context Free Grammars

Order of Evaluation of Parse Tree
Note: These are conventions, not theorems

• Code for a non-terminal is evaluated as a single “block”
– I.e., cannot partially execute it, then execute something else, then

evaluate the rest
– A different parse tree would be needed to achieve that
– E.g. 1: Non-terminal T enforces precedence of * over +
– E.g. 2: E → E + T enforces left-associativity,

 E → T + E enforces right-associativity.
• Parse tree does not specify order of execution of code blocks

– Must be enforced by the code generated for parent block. Obey:
» Operator (e.g, +) cannot be evaluated before operands
» Associativity rules

University of Illinois at Urbana-Champaign Page 11

CS 326 Lecture 3 – Context Free Grammars

Detecting Ambiguity
Caution: There is no mechanical algorithm to decide whether an arbitrary CFG

is ambiguous.
But one common kind of ambiguity can be detected:
If a symbol, A ∈ N is both left-recursive (I.e., A ⇒+ Aα, |α| ≥ 0) and

right-recursive (i.e., A ⇒+ βΑ, |β| ≥ 0), then G is ambiguous, provided that
G is “reduced” (i.e., has no “redundant” symbols).

A

β A

A α

A

αA

Aβ

University of Illinois at Urbana-Champaign Page 12

CS 326 Lecture 3 – Context Free Grammars

Removal of Ambiguity: Example 1
1. Enforce higher precedence for *

E → E + E | T
T → T * T | id | (E)

2. Eliminate right-recursion for E → E + E and T → T * T.
E → E + T | T

T → T * id | T * (E) | id | (E)

University of Illinois at Urbana-Champaign Page 13

CS 326 Lecture 3 – Context Free Grammars

Removal of Ambiguity: Example 2
The Infamous Dangling-Else Grammar:

Stmt → if expr then stmt
 | if expr then stmt else stmt
 | other

Solution: Introduce new non-terminals to distinguish matched then/else
Stmt → matched_stmt | unmatched_stmt
matched_stmt → if expr then matched_stmt else matched_stmt

 | other
unmatched_stmt → if expr then stmt

 | if expr then matched_stmt else unmatched_stmt

