Context-free Grammars

Def: A **Context-free Grammar** (CFG) is a 4-tuple $G=(N, \Sigma, P, S)$

where:

- 1. N is a finite, nonempty set of symbols (non-terminals)
- 2. Σ is a finite set of symbols (terminals)
- 3. N ∩ Σ =□
- 4. $V \equiv N \cup \Sigma$ (vocabulary)
- 5. $S \in N$ (Goal symbol or start symbol)
- 6. P is a finite subset of N × V* (Production rules).

Sometimes written as $G=(V, \Sigma, P,S), N = V \setminus \Sigma$.

Example Grammar: Arithmetic Expressions

= (N, Σ, P, E) where:	
N = { E, T, F}	
$\Sigma = \{ (,), +, *, \underline{id} \}$	
P = { E → T	Note
$E \rightarrow E + T$,
$T \rightarrow F$	Note
$T \longrightarrow T^*F$	NOLE
$F \longrightarrow \underline{IQ}$ $F \longrightarrow (F) $	
·	

1. . . .

Note: $P \subseteq NxV^*$, where $V = N \cup \Sigma = \{ E,T,F,C,(,),+,*,\underline{id} \}$

Note: (A, α) \in P is usually written A $\rightarrow \alpha$ or A :: = α or A : α

G

Derivations of a Grammar

Directly Derives or \Rightarrow :

If α and β are strings in V^{*} (vocabulary), then $\alpha \frac{\text{directly derives}}{\beta} \beta$ (written $\alpha \Rightarrow \beta$) *iff* there is a production $A \rightarrow \delta$ s.t.

- A is a symbol in $\boldsymbol{\alpha}$
- Substituting string δ for A in α produces the string β

Canonical Derivation Step:

The above derivation step is called <u>rightmost</u> if A is the rightmost non-terminal in α . (Similarly, <u>leftmost</u>.)

A rightmost derivation step is also called <u>canonical</u>.

Derivations and Sentential Forms

Derivation:

A sequence of steps
$$\alpha_0 \Rightarrow \alpha_1 \Rightarrow \alpha_{2_*} \Rightarrow ... \Rightarrow \alpha_n$$
 where $\alpha_0 = S$ is called a derivation. It is written $S \Rightarrow \alpha_n$

If every derivation step is rightmost, then this is a <u>canonical</u> <u>derivation</u>.

Sentential Form

Each α_i in a derivation is called a <u>sentential form</u> of G.

Sentences and the Language L(G)

A sentential form α_i consisting only of tokens (i.e., terminals) is called a <u>sentence</u> of *G*.

The <u>language generated by G</u> is the set of all sentences of G. It is denoted L(G).

University of Illinois at Urbana-Champaign

Parse Trees of a Grammar

A **<u>Parse Tree</u>** for a grammar G is any tree in which:

- The root is labeled with *S*
- Each leaf is labeled with a token a ($a \in \Sigma$) or ε (the empty string)
- Each interior node is labeled by a non-terminal.
- If an interior node is labeled A and has children labeled $X_1...X_n$, then $A \rightarrow X_1...X_n$ is a production of G
- If A $\rightarrow \epsilon$ is a production in G, then a node labeled A may have a single child labeled ϵ

The string formed by the leaf labels (left to right) is the **<u>yield</u>** of the parse tree.

Parse Trees (continued)

• An **intermediate parse tree** is the same as a parse tree except the leaves can be non-terminals.

Notes:

- Every $\alpha \in L(G)$ is the yield of <u>some</u> parse tree. Why?
- Consider a derivation, S ⇒ α₁ ⇒ α₂ ⇒ ... ⇒ α_n, where α_n ∈ L(G)
 For each α_i, we can construct an intermediate parse tree.
 The last one will be the parse tree for the sentence α_n
- A parse tree ignores the order in which symbols are replaced to derive a string.

Derivations and Parse Trees

Uniqueness of Derivations

Derivations and Parse Trees

- Every parse tree has a unique derivation: Yes? No?
- Every parse tree has a unique rightmost derivation: Yes? No?
- Every parse tree has a unique leftmost derivation: Yes? No?

Derivations and Strings of the Language

- Every $u \in L(G)$ has a unique derivation: Yes? No?
- Every $u \in L(G)$ has a unique *rightmost derivation*: Yes? No?
- Every $u \in L(G)$ has a unique *leftmost derivation*: Yes? No?

Ambiguity

Def. A grammar, G, is said to be <u>unambiguous</u> if $\forall u \in L(G)$, \exists exactly one canonical derivation S $\Rightarrow^* u$. Otherwise, G is said to be <u>ambiguous</u>.

E.g., *Grammar*: $E \rightarrow E + E | E * E | (E) | \underline{id}$

Two parse trees for u = id + id * id

These are different syntactic interpretations of the input code

Order of Evaluation of Parse Tree

Note: These are <u>conventions</u>, not theorems

- Code for a non-terminal is evaluated as a single "block"
 - I.e., cannot partially execute it, then execute something else, then evaluate the rest
 - A different parse tree would be needed to achieve that
 - E.g. 1: Non-terminal T enforces precedence of * over +
 - E.g. 2: $E \rightarrow E + T$ enforces left-associativity,

 $E \rightarrow T + E$ enforces right-associativity.

- Parse tree does *not* specify order of execution of code blocks
 - Must be enforced by the code generated for parent block. Obey:
 - » Operator (e.g, +) cannot be evaluated before operands
 - » Associativity rules

Detecting Ambiguity

<u>Caution:</u> There is no mechanical algorithm to decide whether an arbitrary CFG is ambiguous.

But one common kind of ambiguity <u>can</u> be detected:

If a symbol, $A \in N$ is both left-recursive (I.e., $A \Rightarrow^+ A\alpha$, $|\alpha| \ge 0$) and right-recursive (i.e., $A \Rightarrow^+ \beta A$, $|\beta| \ge 0$), then G is ambiguous, provided that G is "reduced" (i.e., has no "redundant" symbols).

Removal of Ambiguity: Example 1

1. Enforce higher precedence for *

$E \rightarrow E + E \mid T$ $T \rightarrow T * T \mid \underline{id} \mid (E)$

2. Eliminate right-recursion for $E \rightarrow E + E$ and $T \rightarrow T * T$. $E \rightarrow E + T | T$ $T \rightarrow T * \underline{id} | T * (E) | \underline{id} | (E)$

Removal of Ambiguity: Example 2

The Infamous *Dangling-Else* Grammar: Stmt → if expr then stmt | if expr then stmt else stmt | other

Solution: Introduce new non-terminals to distinguish matched then/else Stmt → matched_stmt | unmatched_stmt matched_stmt → if expr then matched_stmt else matched_stmt | other unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt