Goals of Program Optimization (1 of 2)

Goal: Improve program performance within some constraints

Ask Three Key Questions for Every Optimization

1. Is it legal?
2. Is it profitable?
3. Is it compile-time cost justified?

(1) Is it legal?
Must preserve the semantics of the program
It is sufficient to preserve externally observable results
This is a language-dependent property
E.g., exceptions in C vs. exceptions in Java
May need even more flexibility
Reordering floating point operations

Goals of Program Optimization (2 of 2)

(2) Is it profitable?
Improve performance of average or common case
Limit negative impact in cases where performance is reduced
Predicting performance impact is often non-trivial
Choosing profitable optimization sequences is a major challenge

(3) Is its compile-time cost justified?
The list of possible optimizations is huge
It is easy to go overboard: try everything
Must be justified by performance gain
E.g., whole-program (interprocedural) optimizations usually O4

Classifying Optimizations (1 of 2)

We can classify optimizations along 3 axes

(1) By scope
- Local = within a single basic block
- Peephole = on a window of instructions
- Loop-level = on one or more loops or loop nests
- Global = for an entire procedure
- Interprocedural = across multiple procedures or whole program

(2) By machine information used
- Machine-independent = uses no machine-specific information
- Machine-dependent = otherwise

Classifying Optimizations (2 of 2)

(3) By effect on structure of program:
- Algebraic transformations = uses algebraic properties
 E.g., identities, commutativity, constant folding . . .
- Code simplification transformations = simplify complex code sequences
- Control-flow simplification = simplify branch structure
- Computation simplification = replace expensive instructions with cheaper ones (e.g., constant propagation)
- Code elimination transformations = eliminates unnecessary computations
- DCE, Unreachable code elimination
- Redundancy elimination transformations = eliminate repetition
- Local or global CSE, LIOM, Value Numbering, PRE
- Reordering transformations = changes the order of computations
- Loop transformations = change loop structure
- Code scheduling = reorder machine instructions
Topics in Program Optimization

1. A catalog of local and peephole optimizations
 focus on What, not How

2. Control flow graph and loop structure

3. Global dataflow analysis
 2 example dataflow problems
 (a) reaching definitions
 (b) available expressions
 (c) live variables
 (d) def-use and use-def chains

4. Some key global optimizations
 Sparse Conditional Constant Propagation (SCCP)
 Loop-Invariant Code Motion (LICM)
 Global Common Subexpression Elimination (GCSE)

Local and Peephole Optimizations (1 of 3)

(1) Unreachable code elimination
 Code after an unconditional jump and with no branches to it
 Code in a branch never taken
 (Often eliminated during global constant propagation)

(2) Flow-of-control optimizations
 If simplification: constant conditions, nested equivalent conditions
 Straightening: merge basic blocks that are always consecutive
 Branch folding:
 unconditional jump to unconditional jump
 conditional jump to unconditional jump
 unconditional jump to conditional jump

Local and Peephole Optimizations (2 of 3)

(3) Algebraic simplifications
 exploit algebraic identities, commutativity, . . .
 \(x = 0, y + 1, 18 + z + 14 \)

(4) Redundant instruction elimination
 Redundant loads and stores:
 \(\text{LD} \ a \rightarrow \ R0 \)
 \(\text{ST} \ R0 \rightarrow \ a \)
 Usually caused by compiler-generated code
 Conditional branch always taken
 Usually caused by global constant propagation

Local and Peephole Optimizations (3 of 3)

(5) Reduction in strength
 Replace \(x^2 \) by \(x \times x \)
 Replace \(2^n \times x \) by \(x << n \)
 if integer:
 Replace \(x/4 \) by \(x = 0.25 \)
 if real division

(6) Machine idioms and Instruction Combining
 (Or could be done during Instruction Selection, e.g., with Burg)
 Multiply-Add instruction: \(r3 = r1 + r1 \times r2 \)
 Auto-increment or auto-decrement addressing modes
 Conditional move instructions
 Predicated instructions
 See Section 18.1.1 in Muchnick's book for some strange idioms
Flow Graphs

A fundamental representation for global optimizations.

Definitions

Flow Graph: A triple $G = (N, A, s)$, where (N, A) is a (finite) directed graph, $s \in N$ is the designated "initial" node, and there is a path from node s to every node $n \in N$.

Entry node: A node with no predecessors.

Exit node: A node with no successors.

Properties

- There is a unique entry node, which must be s (Reachability assumption)
- Assumption is safe: can delete unreachable code
- Assumption may be conservative: some branches never taken.
- Control Flow Graphs are usually sparse. That is, $|A| = O(|N|)$. In fact, if only binary branching is allowed $|A| \leq 2|N|$.

Control Flow Graphs

Definitions

Review slides on Control Flow Graphs in the IR lecture

CFG Construction:

Read Section 8.4.1 of Aho et al. for the algorithm to partition a procedure into basic blocks. This is required material.

Dominance in Flow Graphs

Let d, d_1, d_2, d_3, n be nodes in G.

Definitions

d dominates n (write "d dom n") in every path in G from s to n contains d.

d properly dominates n if d dominates n and $d \neq n$.

d is the immediate dominator of n (write "d idom n") if d is the last dominator on any path from initial node to n, $d \neq n$.

Properties

- s dom d, \forall nodes d in G.
- Partial Ordering: The dominance relation of a flow graph G is a partial ordering:
 - Reflexive: n dom n is true $\forall n$.
 - Antisymmetric: If d dom n, then n dom d cannot hold.
 - Transitive: d_1 dom d_2 \land d_2 dom d_3 \rightarrow d_1 dom d_3.

The Dominator Tree

Why it is a Tree

The dominators of a node form a chain:

- If d_1 dom n and d_2 dom n and $d_1 \neq d_2$, then:
 - it must hold that d_1 dom d_2 or d_2 dom d_1.
 - Every node $n \neq s$ has a unique immediate dominator.

Definition: Dominator Tree

The Dominator Tree of a flow graph G is a graph with the same nodes as G, and an edge $n_1 \rightarrow n_2$ if n_1 idom n_2.
Loops in Flow Graphs

Why Defining Loops is Challenging
- Easy case: Structured nested loops: FOR or WHILE
- Harder case: Arbitrary flow and exits in loop body, but unique loop “entry”
- Hardest case: No unique loop “entry” (“irreducible loops”)

Defining Loops

Idea: Use dominance to define Natural Loops

Back Edge: An edge $n \rightarrow d$ where $d \text{ dom } n$

Natural Loop: Given a back edge, $n \rightarrow d$, the natural loop corresponding to $n \rightarrow d$ is the set of nodes $(d + \text{ all nodes that can reach } n \text{ without going through } d)$

Loop Header: A node d that dominates all nodes in the loop
- Header is unique for each natural loop
- $\rightarrow d$ is the unique entry point into the loop
- Uniqueness is very useful for many optimizations

Preheader: An optimization convenience

The Idea
If a loop has multiple incoming edges to the header, moving code out of the loop safely is complicated
Preheader gives a safe place to move code before a loop

The Transformation
Introduce a pre-header p for each loop (let loop header be d):
1. Insert node p with one out edge: $p \rightarrow d$
2. All edges that previously entered d should now enter p

Reducible and Irreducible Flow Graphs

Reducible flow graph:
A flow graph G is called reducible if we can partition the edges into 2 sets:
1. forward edges: should form a DAG in which every node is reachable from initial node
2. other edges must be back edges: i.e., only those edges $n \rightarrow d$ where $d \text{ dom } n$

Otherwise graph is called irreducible.

Idea: Every “cycle” has at least one back edge
⇒ All “cycles” in a reducible graph are natural loops
Not true in an irreducible graph!