Why Global Dataflow Analysis?

Answer key questions at compile-time about the flow of values and other program properties over control-flow paths

Compiler fundamentals
- What defs. of \(x \) reach a given use of \(x \) (and vice-versa)?
- What \(\langle \text{ptr}, \text{target} \rangle \) pairs are possible at each statement?

Scalar dataflow optimizations
- Are any uses reached by a particular definition of \(x \)?
- Has an expression been computed on all incoming paths?
- What is the innermost loop level at which a variable is defined?

Correctness and safety:
- Is variable \(x \) defined on every path to a use of \(x \)?
- Is a pointer to a local variable live on exit from a procedure?

Parallel program optimization, program understanding, ...

Common Applications of Global Dataflow Analysis

Preliminary Analyses
- Pointer Analysis
- Detecting uninitialized variables
- Type inference
- Strength Reduction for Induction Variables

Static Computation Elimination
- Dead Code Elimination (DCE)
- Constant Propagation
- Copy Propagation

Redundancy Elimination
- Local Common Subexpression Elimination (CSE)
- Global Common Subexpression Elimination (GCSE)
- Loop-invariant Code Motion (LICM)

Partial Redundancy Elimination (PRE)

Code Generation
- Liveness analysis for register allocation

Dataflow Analysis: Our Objectives

1. To distinguish different types of dataflow problems
 - \(\text{may v. must} \)
 - \(\text{forward v. backward} \)
 - \(\text{intersection v. union} \)

2. To set up and solve the dataflow equations for a basic dataflow problem

3. To identify dataflow problems needed for a given optimization

Preliminary definitions

Value, Storage location, variable, pointer: these should be familiar

Alias or alias pair: Two different names for the same storage location

Reference: An occurrence of a name in a program statement

Use of a variable: A reference that \(\text{may read} \) the value of the variable.

Definition of a variable: A reference that \(\text{may store} \) a value into the storage location(s) named by the variable.

Examples: Assignment; FOR; input I/O

Unambiguous definition: \(\text{guaranteed to store to} \ X \)

Ambiguous definition: \(\text{may store to} \ X \)

Ambiguity comes from aliases, unpredictable side effects of procedure calls
Dataflow Analysis Basics

Point: A location in a basic block just before or after some statement.

Path: A path from p_1 to p_n is a sequence of points $p_1; p_2; \ldots; p_n$ such that (intuitively) some execution can visit these points in order.

[See book for formal definition]

Kill of a Definition: A definition d of variable V is killed on a path if there is an unambiguous definition of V on that path.

Kill of an Expression: An expression e is killed on a path if there is a possible definition of any of the variables of e on that path.

Identifying Defs, Refs

Examples

1. $X = Y + 1$; // $r_{1,Y}$, $d_{1,X}$
2. $p = \text{cond? } &X : &Z$; // $d_{3,p}$ (what about X and Z?)
3. $*p = Y + 1$; // $r_{4,Y}$, $d_{4,X}$, $d_{4,Z}$
4. // On line 54: list->next = new ListNode(...);
5. list->next->val = list->val + 1; // $r_{7,H_{54}}->val$, $d_{7,H_{54}}->val$

Principles of “naming” memory locations

- Variable names identify (sets of) memory locations
-Defs, refs apply to individual variables
-Arrays are usually named as a single variable
-Heap allocated objects can be named (i.e., treated as “dummy variables”) in different ways
- Most common: H_k, $k = \text{line number of malloc/new}$

An Example Dataflow Problem: Reaching Definitions

May or Must

$\forall p$, compute $\text{REACH}(p)$: the set of defs that reach point p.

Definition d reaches point p if there is a path from the point after d to p such that d is not killed along that path.

Dataflow variables (for each block B)

- $\text{Gen}(B)$ $=$ the set of defs in B that are not killed in B.
- $\text{Kill}(B)$ $=$ the set of all defs that are killed in B (i.e., on the path from entry to exit of B, if def $d \in B$; or on the path from d to exit of B, if def $d \in B$).
- $\text{In}(B)$ $=$ the set of defs that reach the point before first statement in B
- $\text{Out}(B)$ $=$ the set of defs that reach the point after last statement in B

The difference:

- $\text{Gen}(B), \text{Kill}(B)$ are local properties of block B alone.
- $\text{In}(B), \text{Out}(B)$ are global dataflow properties

Dataflow Analysis for Reaching Definitions

Dataflow equations

$\text{In}[B] = \bigcup_{p: \text{in } B} \text{Out}[p]$

$\text{Out}[B] = \text{Gen}[B] \bigcup (\text{In}[B] - \text{Kill}[B])$

Dataflow algorithms

Goal: Solve these $2n$ simultaneous dataflow equations ($n = \#\text{basic blocks}$)

- Block-structured graph (no GOTO; no BREAK from loops):
 - bottom-up evaluation, one scope at a time
- General flow-graphs:
 - iterative solution
Iterative Algorithm for Reaching Definitions

1. Initialize:
 /* If there are globals or formals, in[s] ≠ φ */
 in[B] = φ ∀B
 out[B] = gen[B] ∀B

2. Iterate until Out[B] does not change:
 do change = false
 for each block B do
 In[B] = \bigcup_p: p \rightarrow B Out[p]
 oldout = Out[B]
 if (oldout ≠ Out[B]) change = true
 end
 while (change == true)

What is the algorithm doing?

1 (d0) X = ...
2 if (...)
3 ...
4 else
5 (d1) X = ...
6 endif
7 ...
8 (d2) X = ...
9 ...
10 if (...){...} else {...}
11 ...
12 ...
13 ...
14 ...
15 }
16 ...

Convergence of the Algorithm

OUT[B] must converge in a finite #iterations
- Out[B] is finite ∀B
- Out[B] never decreases for any B
 - Only KILL sets (constants) are ever subtracted from OUT sets
 - IN sets never decrease (if OUT sets never decrease)
 - But isn’t that a circular argument?

Acyclic Property
- Definitions need propagate only over acyclic paths
 - Each block only adds Gen[B], subtracts Kill[B]
 - ∪, – : only need to add, remove once
 - Must visit each block exactly once
 - Need one final iteration to check convergence

See Section 10.9 for an example.

Efficient Orderings for Visiting Basic Blocks

[Assume reducible graphs for now → Cycles “formed by” back edges]
1. No back edges: 2 iterations
2. 1 back edge (on any acyclic path): 3 iterations
3. k back edges on an acyclic path: k + 2 iterations
Efficient Orderings for Visiting Basic Blocks

Goal: Propagate information as far as possible in each iteration

Postorder and Reverse Postorder
- Depth-first spanning tree (DFST); tree constructed by Depth-first Search
- DFST has 3 kinds of edges: tree edges, cross-edges, up-edges
- Graph excluding up-edges is acyclic (DAG)
- Postorder (on original graph) \equiv postorder traversal of resulting DAG

Properties of Reverse Postorder
- If $B_1 \rightarrow B_2$, then B_1 is visited before B_2, except for up-edges of DFST.
- If CFG is reducible, up-edges are exactly the back edges!
- In any case, max. # number of up-edges on any acyclic path is never more than maximum loop nesting depth

Efficiency of the Algorithm

Rule-of-thumb: Typically 5 iterations or less!
(when dataflow information propagates only over acyclic paths)

Efficient dataflow ordering
- Use Reverse Postorder (RPO) for “forward” dataflow problems
- Use Postorder (PO) for “backward” dataflow problems

Information propagates “as far as possible” in each iteration, until it reaches a “retreating” DFS edge. It flows across the retreating DFS edge in the next iteration.

Rule of thumb
- Knuth [1971]: Max. #up-edges on each acyclic path is typically 3 or fewer.

See Section 10.10 for more details.

Available Expressions

Definitions
- Available expressions: $x + y$ is available at point p if:
 - (a) every path to p evaluates $x + y$
 - (b) between the last such evaluation and p on each path, neither x nor y is modified.

- **Kill:** Block B kills $x + y$ if it may assign to x or y, and it does not subsequently recompute $x + y$.

- **Generate:** Block B generates $x + y$ if it definitely evaluates $x + y$, and it does not subsequently modify x or y.

Dataflow variables:
- Let $U = \text{universal set of expressions in the program}$. Then:
 - $\text{in}(B) = \{ e \in U | e \text{ is available at entry to } B \}$
 - $\text{out}(B) = \{ e \in U | e \text{ is available at exit from } B \}$
 - $\text{gen}(B) = \{ e \in U | e \text{ is generated by } B \}$
 - $\text{kill}(B) = \{ e \in U | e \text{ is killed by } B \}$

Naming Expressions

Examples

```
1 a = x * y;  // eval e_1: x * y
2 b = x * y;  // eval e_1: x * y: redundant
3 x = 2;      // "kills" e_1
4 c = x * y;  // eval e_1: x * y
5 if (...) { x=5; t= x+y; }  // eval e_2: x+y
6 else { x=9; t= x+y; }      // eval e_2: x+y
7 x = x+y;    // eval e_2: x+y: redundant!
8 p = cond? &X : &Z;        // eval e_3: X+1, e_4: Y+1 may not be eval
9 ... = *p + 1;            // eval e_3: X+1, e_4: Y+1 may not be eval
10 ... = X + 1;            // eval e_3: X+1 may not be redundant
```
Dataflow Analysis for Available Expressions

Dataflow equations:

\[\text{In}[B] = \]
\[\text{Out}[B] = \]

Algorithm is identical to Reaching Definitions except:
- Confluence operator is \(\cap \) instead of \(\cup \)
- Algorithm must initialize sets as follows:
 \[\text{In}[s] = \phi \]
 \[\text{Out}[s] = \epsilon_{\text{gen}}[s] \]
 \[\text{Out}[B] = U - \epsilon_{\text{kill}}[B] \quad \forall B \neq s \]

Live Variables

Variable \(x \) is live at point \(p \) if \(x \) may be used along some path starting at \(p \).

Dataflow variables

\[\text{def}[B] = \{ x \in V \mid x \text{ is assigned in } B \} \]
\[\text{use}[B] = \{ x \in V \mid x \text{ may be used in } B \} \]
\[\text{in}[B] = \{ x \in V \mid x \text{ is live at entry to } B \} \]
\[\text{out}[B] = \{ x \in V \mid x \text{ is live at exit from } B \} \]

Dataflow equations

\[\text{In}[B] = \]
\[\text{Out}[B] = \]

General Approach to Dataflow Analysis

1. Choose dataflow variables for problems of interest:
 \[\text{Gen}(B) = \{ \text{“information” generated in block } B \} \]
 \[\text{Kill}(B) = \{ \text{“information” killed in block } B \} \]
 \[\text{In}[B], \text{Out}[B] \]

2. Set up dataflow equations
 - Q. what is the transfer function for each block? E.g.,
 \[\text{Out}[B] = \text{Gen}(B) \cup (\text{In}[B] - \text{Kill}[B]) \]
 - Q. is it a forward vs. backward problem? E.g.,
 \[\text{In}[B] = \bigcup_{p \rightarrow B} \text{Out}[p] \quad \text{or} \quad \text{Out}[B] = \bigcup_{B \rightarrow s} \text{In}[s] \]
 - Q. what is the “confluence” operator: \(\cap \), \(\cup \), other?

3. Solve iteratively until convergence
 - Postorder or Reverse Postorder

Def-Use and Use-Def Chains

Definitions

Use-Def chain or ud-chain: For each use \(u \) of a variable \(v \), \(\text{Defs}(u) \) is the set of instructions that may have defined \(v \) last prior to \(u \).

Def-Use chain or du-chain: For each def \(d \) of a variable \(v \), \(\text{Uses}(d) \) is the set of instructions that may use the value of \(v \) computed at \(d \)

Note: \(d \in \text{Defs}(u) \iff u \in \text{Uses}(d) \)
Note: du-chains (or ud-chains) form a graph

Comparing with SSA
- Multiple defs reach each use, unlike SSA
- More edges in def-use graph than in SSA graph
- But fewer variable names, no \(\phi \) functions
Computing and using du-chains and ud-chains

Construction
- Construct D_{efs} from the results of Reaching Definitions.
- Then invert D_{efs} to compute U_{ses}.

⇒ We can build chains very efficiently!

Some applications of chains:
- Building live ranges for graph-coloring register allocation
- Constant propagation
- Dead-code elimination
- Loop-invariant code motion