Notation used below is described in Dijkstra's paper on self-stabilization. When machine i is performing the algorithm below,
L denotes the state of the machine ($\mathrm{i}-1$) modulo ($\mathrm{N}+1$),
and S is the state of machine i itself. The machines are numbered 0 through N (thus, there are $N+1$ machines).

Solution with K -state Machines ($\mathrm{K}>\mathbf{N}$)

Here each machine state is represented by an integer value S, satisfying $0 \leq S<K$. For each machine, one privilege is defined, viz.
for the bottom machine:
if $L=S$ then $S:=(S+1) \bmod K \mathrm{f}$
for the other machines:
if $L \neq S$ then $S:=L$ fi

Paxos

Phase 2. (a) If the proposer receives a response to its prepare requests (numbered n) from a majority of acceptors, then it sends an accept request to each of those acceptors for a proposal numbered n with a value v, where v is the value of the highest-numbered proposal among the responses, or is any value if the responses reported no proposals.
(b) If an acceptor receives an accept request for a proposal numbered n, it accepts the proposal unless it has already responded to a prepare request having a number greater than n.

Cryptography

*. Encoding (encryption) of a message that can only be read (decryption) by a key.

* In shared key cryptography (symmetric cryptography) the sender and the recipient know the key, but no one else does.
\nLeftarrow E.g., DES (Data Encryption Standard) - 56 b key operates on 64 b blocks of data. Notation: $\mathrm{K}_{\mathrm{AB}}(\mathrm{M})$.
\ddagger How do Alice and Bob get the shared key K_{AB} to begin with?
* In public/private key pairs messages are encrypted with a published public key, and can only be decrypted by a secret private decryption key.

Code for E \& D
*E RSA / PGP key - at is "open-source"

