
4/12/16

1

Bakery Algorithm
1

Code for entry section:
 Choosing[i] := true!
!Number[i] := max{Number[0], …, Number[n-1]} + 1!
!Choosing[i] := false!
!for j := 0 to n-1 (except i) do!
! !wait until Choosing[j] = false!
! !wait until Number[j] = 0 or!
! ! (Number[j],j) > (Number[i],i)!
!endfor!

Code for exit section:
 Number[i] := 0

2-Processor Mutex Algorithm
2

Code for entry section:
1  W[i] := 0!

2  wait until W[1-i] = 0 or Priority = i!
3  W[i] := 1!

4  if (Priority = 1-i) then!
5  if (W[1-i] = 1) then goto Line 1!

6  else wait until (W[1-i] = 0)

Code for exit section:
7  Priority := 1-i!
8  W[i] := 0

Deadlocks
¨  Necessary conditions for deadlocks

¤  Non-shareable resources (locked objects)
¤  No preemption on locks
¤  Hold & Wait
¤  Circular Wait (Wait-for graph)

T U!

Wait for!Held by!

Held by!Wait for!

A!

B! T
U!

Wait for!Held by!

Held by!Wait for!

A!

B!
V!

W

...!

...!

Wait for!

Wait for!Held by!

Held by!

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design
Edn. 5

© Pearson Education 2012

Validation of Transactions

Backward validation of transaction Tv	

	
boolean valid = true;	

	
for (int Ti = startTn+1; Ti <= finishTn; Ti++){	

	
 	
if (read set of Tv intersects write set of Ti) valid = false;	

	
}	

	

Forward validation of transaction Tv	

	
boolean valid = true;	

	
for (int Tid = active1; Tid <= activeN; Tid++){	

	
 	
if (write set of Tv intersects read set of Tid) valid = false;	

	
}	

5

Link Reversal Algorithm

A F B

C E G

D

Maintain a directed acyclic
graph (DAG) for each
destination, with the destination
being the only sink

This DAG is for destination
node D

Links are bi-directional

But algorithm imposes
logical directions on them

Peer pointers (2): finger tables

