Recommended exercises on some topics that were not addressed by questions on the homework:

- Suppose that Alice and Bob want to use public-key cryptography to communicate with each other. (a) Explain how Alice may encrypt a message for Bob, and how Bob would decrypt it (i.e., which keys would they use?). (b) Explain how Bob may sign a message for Bob, and how Bob would verify the signature.
- What is a digital certificate?
- Consider Dijkstra's self-stabilizing solution for $\mathrm{K}>\mathrm{N}$ where we have $\mathrm{N}=4$ machines and $K=5$. Suppose that the state of machines $0,1,2,3$ and 4 is presently $2,4,2,2,0$, respectively.
(a) Which machine(s) have privilege in the above state?
(b) Suppose that a privileged machine with the smallest identifier (among the privileged machines makes a "move" (i.e., takes the action specified by the algorithm). List the state of all the machines after this move. In the new state, which machine(s) have privilege?
- Distance-vector routing: Readings for distance vector routing is listed at Lecture 27 (although the material was covered in class previously).

Suppose that a network consists of 5 nodes, with identifiers A, B, C, D and E. Suppose that the distance vectors at nodes A and B are as shown below at a certain point of time.

Table at node A

To	Next-Hop	Cost
B	B	2
C	D	8
D	D	2
E	-	infinity

Table at node B below

To	Next-Hop	Cost
A	A	2
C	C	3
D	D	9
E	C	6

Subsequently, node B sends its distance vector to node A. Assume that the cost of link BA is 2. Determine the distance vector at node A after it updates its distance vector on receipt of the message from B.

- The following questions relate to Paxos by Lamport:
(a) Suppose that an acceptor A1 has most recently responded to prepare message containing proposal number 10 and value 3 . In each case below, determine whether A1 will respond if it receives the specified message, and is so, what would be the contents of its response:
(i) A1 receives a prepare message containing proposal number 8 and value 5.
(ii) A1 receives a prepare message containing proposal number 11 and value 5 .
(b) Suppose that proposer P1 sends a prepare message with proposal number 20 and value 9, and receives responses from a quorum (majority) of acceptors. Acceptor A1's response to P1 contains a proposal with sequence number 22 and value 17; Acceptor A2's response to P1 contains a proposal with sequence number 23 and value 6 ; remaining responses do not contain a proposal.

Which proposal number and value would P1 include in its accept messages?
See lecture 19 for Paxos. The Lectures page also provides a link to slides used for this lecture.

- Determine whether the various executions shown in the figures in the file below satisfy causal consistency. See Lecture 15 and material in assigned reading for the definition of causal consistency.

