
1

 2002 M. T. Harandi and J. Hou

Student Notes Pages

Li intialized to 0 at process Pi

•  Compute event at process Pi:
–  Increment Li by 1
–  New value of Li is the timestamp of the compute event

•  Send event at process Pi: Consider e = send(m)
–  Increment Li by 1
–  New value of Li is the timestamp of send event e
–  Piggyback the timestamp of e with message m

•  Receive event at process Pi: Suppose (m,t) where m is a message, and t is
the piggybacked timestamp, is received at event e at Pi

–  Update Li as Li := max(Li, t)+1

Logical Clock (Lamport Clock) Vector Logical Clocks
v  With Lamport Logical Timestamp

e ! f ⇒ timestamp(e) < timestamp (f), but
timestamp(e) < timestamp (f) ⇒ {e ! f} OR {e and f concurrent}

v  Vector Logical time addresses this issue:
q Each process maintains a vector clock,

length = number of processes
q  At each event, process i increments ith element of vector Vi

 " The new Vi is the timestamp of the event
q  A message carries the Send event’s vector timestamp

q  For a receive(message) event at process k … let Vmessage denote
vector timestamp received with the message

 Max(Vk[j] , Vmessage[j]), if j is not k

 Vk[j] + 1 j = k
Vk[j] =

Comparing Vector Timestamps

v  VT1 = VT2,
 iff VT1[i] = VT2[i], for all i = 1, … , n

v  VT1 < VT2,
 iff VT1[i] < VT2[i], for all i = 1, … , n

v  VT1 < VT2,
 iff VT1 < VT2 &
 ∃ j (1 < j < n & VT1[j] < VT2 [j])

v  VT1 is concurrent with VT2

 iff (not VT1 < VT2 AND not VT2 < VT1)

Theoretical Base for NTP

Ti

Ti-1Ti-2

Ti- 3

Server B

Server A

Time

m m'

Time

•  t and t’: actual transmission times
 for m and m’(unknown)
•  o: true offset of clock at B
 relative to clock at A
•  oi: estimate of actual offset
 between the two clocks
•  di: estimate of accuracy of oi ;
 total transmission times for m
 and m’; di=t+t’

i−2T = i−3T + t +o

iT = i−1T + t '−o
This leads to

id = t + t ' = i−2T − i−3T + iT − i−1T
o = io + (t '− t) / 2, where

io = (i−2T − i−3T + i−1T − iT) / 2.
It can then be shown that

io − id / 2 ≤ o ≤ io + id / 2.

Causal Ordering using vector timestamps

The number of group-g messages
from process j that have been seen at
process i so far

Linearizability

An execution is linearizable if there exists a
permutation that is

 valid,
 per-process order-preserving, and
 real-time order-preserving

