CS425 Fall 2016 – Homework 2
(a.k.a. “Hollywood Land”)

Out: Sep 20, 2016. Due: Oct 4, 2016 (Start of Lecture. 2 pm US Central time.)

Topics: Key-value Stores, Time and Ordering (Lectures 9-12)

All updates are in red (Questions updated so far: Q3@9/25)

Instructions:

1. Attempt any 8 out of the 10 problems in this homework (regardless of how many credits you’re taking the course for). If you attempt more, we will grade only the first 8 solutions that appear in your homework (and ignore the rest). Choose wisely!
2. Please hand in hardcopy solutions that are typed (you may use your favorite word processor. We will not accept handwritten solutions. Figures and equations (if any) may be drawn by hand. Online students can email solutions, and MCS-DS students must upload on Coursera.
3. Please start each problem on a fresh sheet (not just page), and type your name at the top of each sheet. Staple all your sheets together.
4. Homeworks will be due at the beginning of class on the day of the deadline. No extensions.
5. Each problem has the same grade value as the others (10 points each).
6. Unless otherwise specified, the only resources you can avail of in your HWs are the provided course materials (slides, textbooks, etc.), and communication with instructor/TA via discussion forum and e-mail.
7. You can discuss lecture concepts and the questions on Piazza and with your friends, but you cannot discuss solutions or ideas. All work must be your own.

Prologue: You have just been made the technical head in a production company that is producing a new Hollywood movie. The movie is sure to be a blockbuster, with a lot of well-known actors and actresses hired to star in it. Amazingly many of them either know Computer Science, or quickly learn it from you. You run into them every day on the set. Here is what ensues.

All characters used in this homework are meant to make the homework fun. Any resemblance to persons, places, or events, living or dead, past, present, or future, is purely coincidental.
Problems:

1. One of the producers, Leo Bloom, likes Bloom filters. In order to make more money, he decides to make the film a flop. His mind at ease, he uses his spare time to create a Bloom filter uses \(m = 32 \) bits, and 4 hash functions \(h_1, h_2, h_3, \) and \(h_4 \), where \(h_i(x) = (x + xi) \mod m \). His program then starts inserting continuous integers starting from 2016, 2017, 2018, ... and so on. Before inserting each integer, his program checks if it is already in the Bloom filter (i.e., is a false positive)—if it is not, then the integer is inserted; if it is a false positive, the program terminates. What integer does the program terminate on? (Give the integer that is the false positive, not the last-inserted integer).

2. (For this question you can search resources on the Web.) The other producers have a different idea and in order the movie a hit, they hire a wonderful director named Kathryn. One day you get hurt near your locker, and Kathryn helps you out. You get talking about key-value stores. She is so intrigued that she quickly looks up the Web, learns up everything about key-value stores, and asks you the following question. While Cassandra uses Last Writer Wins to overwrite previously written values, Riak uses a variant of vector timestamps called vector clocks (now called Causal Context).
 a. Give three advantages of each of these two approaches over the other. Describe each advantage briefly.
 b. Which of these two approaches would you prefer, and why?

3. (For this question you can search resources on the Web.) An actor named Orlando uses his spare time to design a new Bloom filter-based data structure. He says that instead of using a single Bloom filter \(B \) with 1024 bits and 4 hash functions, his new datastructure uses 2 Bloom filters \(B_1 \) and \(B_2 \), each with 512 bits, and each using 4 hash functions (different from each other, and different from the above 4 hash functions). When checking for an item, it returns true only if the item is present in both \(B_1 \) and \(B_2 \). When inserting an item \(I \), his approach first checks if \(I \) is already in \(B_1 \)—if so, then \(I \) is inserted into \(B_2 \). If \(I \) is not already present in \(B_1 \), then it is inserted into both \(B_1 \) and \(B_2 \). Which of the above two approaches—original using only \(B \) vs. Orlando’s Bloom filter using \(B_1 \) and \(B_2 \)—gives better false positive rates? Answer this for two cases: (1) when there are typically 5 elements inserted into the datastructure, (2) when there are typically 100 elements inserted into the datastructure. You can use the Web as a resource to find false positive rates for Bloom filters (but solve the problem yourself!).

4. (For this question you can search resources on the Web.) One of the actresses, named Meryl, is consistently a good actress and consistently wins awards. It’s no
surprise that she is very interested when you tell her about consistency models. She asks you about the differences between linearizability, sequential consistency, and causal consistency (for key-value stores with get/put operations on keys).

a. Can you say briefly, and clearly what the differences are between the three?

b. Give an example (using 2-3 clients writing and reading objects), where, for a particular read, using one of the 3 models above gives a completely different return value. While you can search the Web to clarify differences between the 3 models, you cannot borrow an example from the Web.

5. To run the video processing services (it’s a 3D movie after all!), you set up a Hadoop cluster, and leave one of the characters in the movie in charge of it. The character in charge is named Agent Smith. For reasons of security, Agent Smith wants the Hadoop cluster disconnected from the outside world, that is, no connection to the internet! For synchronization the cluster use the RM server as the central time keeper. All servers run Cristian’s algorithm using the RM server as the primary. What problem does this approach suffer from? How would Agent Smith fix this problem (without requiring a connection to the outside internet)?

6. One of the actors, fresh from a hit role in a TV series, is named Slater. Slater likes Cristian’s algorithm, and gets to calibrating it in the above cluster. He finds that the round-trip time for one round of synchronization messages is 1.01 ms. He would like to find the error in the run, and so he measures some minimum delays. On the client side, he finds that there is a delay of at least 13.7 microseconds for a packet to get from an application to the network interface and a delay of 0.23 ms for the opposite path (network interface to application buffer). On the server side, he only knows that the time to get from the network interface to the application buffer is 20 microseconds, but before he can measure the reverse path, he is called out to do his shot. What is the error, given the data just presented?

7. The lead actress, named Jennifer L. jokingly tells you that her last name initial L is for Lamport. Consequently you chat her up and tell her all about Lamport timestamps. She looks at the CS425 website, sees the logo on top, and draws the following timeline for you, and challenges you to mark Lamport timestamps on all events. The dots represent instructions executed at the corresponding process.
8. It is wrap-up time for the movie! Unfortunately for you, one of the villainous actors, Jango Fett, played a character that had multiple clones in the movie. That evening, 4 of these clones surround you and challenge you to mark vector timestamps on the timeline in the previous question #7 (or else!). Can you do it and escape the clones, and get back home safe? The dots represent instructions executed at the corresponding process.

9. At the movie premiere, you run into another actress from your movie, Angelina. She corners you in the after-party and tells you that she has been mapping all the emails among her 4 eldest kids, and would like to find some causality among their communications. The only exception is that instead of incrementing timestamps by +1 (as in the original algorithm), she would like you increment them by +6 each time. Would you mark Lamport timestamps for her? The dots represent instructions executed at the corresponding process.

10. The movie is a hit! The breakout star of the movie, Kristen, was so happy with your work that she has asked the production company give you one last puzzle to solve before you can be paid the millions of $ you are owed. The puzzle concerns a modified version of the Lamport timestamp marking algorithm.
Instead of incrementing timestamps by +1 each time (as in the original algorithm), you the new algorithm increments it by +K where K is an integer.

a. If K=6 (as in Question #9), would these new timestamps still preserve (obey) causality? Describe why or why not.

b. If instead, K is selected to be a random positive integer (randomly selected for each event), would these new timestamps still preserve (obey) causality? Describe why or why not.