
 1

CS425 Fall 2023 – Homework 1

(a.k.a. “All the Presidents’ People”)

Out: Aug 23, 2023. Due: Sep 13, 2023 (Start of Lecture, 2 pm US Central)

Topics: Clouds, Mapreduce, Gossip, Failure detectors, Grids (Lectures 1-6)

Clarifications added 8/30 to Q3,4,5,6

Instructions:

1. Attempt any 8 out of the 10 problems in this homework (regardless of how
many credits you’re taking the course for). If you attempt more, we will grade
only the first 8 solutions that appear in your homework (and ignore the rest).
Choose wisely!

2. Please hand in solutions that are typed (you may use your favorite word
processor. We will not accept handwritten solutions. Figures and equations (if
any) may be drawn by hand (and scanned).

3. All students (On-campus and Online/Coursera) – Please submit PDF only!
Please submit on Gradescope. [https://www.gradescope.com/]

4. Please start each problem on a fresh page, and type your name at the top of
each page.

5. Homeworks will be due at the beginning of class on the day of the deadline.
No extensions. For DRES students only: once the solutions are posted (typically
a few hours after the HW is due), subsequent submissions will get a zero. All
non-DRES students must submit by the deadline time+date.

6. Each problem has the same grade value as the others (10 points each).
7. Unless otherwise specified in the question, the only resources you can avail of in

your HWs are the provided course materials (slides, textbooks, etc.), and
communication with instructor/TA via discussion forum and e-mail.

8. You can discuss lecture concepts and the questions on Piazza and with your
friends, but you cannot discuss solutions or ideas on Piazza.

Prologue: The 2024 US Presidential Election Primary campaigns are heating up! Most
Presidential Campaigns today run distributed systems and cloud computing for storage
and analytics of data such as the campaign, events, voters, schedules, etc., (e.g., Obama
and Romney campaigns in 2012 effectively built and used distributed systems,

 2

including cloud computing and mobile computing, and later candidates also used it,
some effectively some less so.).

This homework uses fictitious stories and characters from the ongoing
presidential campaigns to frame the homework problems, and to keep the questions fun
and relevant (and also informative!). The choice of candidates or parties in questions, or
their frequency across questions, is purely arbitrary, and there is no political message in
the question framing. Any resemblance to persons, places, or events, living or dead,
past, present or future, is purely coincidental. These stories and this homework are not
intended to side with or against any candidate, or make comments about any candidate.
They are not at supporting or endorsing, nor at criticizing or disparaging, any
candidate, campaign, people in campaigns, political parties or affiliations, or voters or
citizens or persons living in the US. All interns are fictional, as are their goals and
actions.

Problems:

1. (You can use other websites for this question, but you should not cut and paste
text. Please write answers in your own words!) One of the candidates who used
to coach a former president now wants to beat him in the election. This candidate
is known for thinking out of the box. While his campaign has been running their
services on AWS EC2 instances, they recently became aware of serverless cloud
services. Can you help them? (Please limit your answer for each part to less than
50 words. Be concise!)

a. What is the key difference between AWS Lambda and AWS EC2?
b. What are the two key differences between AWS Lambda and AWS spot

instances (think: pricing and how long instances last)?
c. What are the names of the corresponding Microsoft Azure and Google

Cloud counterparts (names) of Amazon Lambda?
d. Give one example application (class) where you would prefer AWS EC2,

and one where you would prefer AWS Lambda. Justify your choices
briefly.

2. (You can use other websites for this question, but you should not cut and paste
text. Please write answers in your own words!) Many of the campaigns are using
Machine Learning, which of course benefits from GPUs. (Please limit your
answer for each part to less than 50 words. Be concise!) Because the campaign
has limited budget, they are only looking at single GPU VM instances, i.e., only
those that have one (and only one) GPU inside them (but arbitrary amount of
memory and CPUs).

 3

a. They want to find the single GPU VM type across all 3 major cloud
providers (AWS, Azure, Google Cloud) that has the highest available
memory. Can you find it for them? (Note this refers to single GPU, not
cloud instance).

b. Repeat the previous question but find instead the lowest available
memory.

c. What is the difference between a GPU and a “TPU” (among cloud
offerings)?

3. (Note: From this question onwards you CANNOT use websites but can only use course
material. Also, for all Mapreduce questions please only use the class definition/template
for Mapreduce jobs, i.e., Map/Reduce tasks/functions, and not other sources from the
Web, since there are many different variants on the Web!) One of the candidates
always imitates and emulates a previous president. This candidate believes they
will win by becoming the most popular person on social media. An intern in
their campaign wants to write a Mapreduce program. In MapReduce, one writes
a program for Map that processes one input line at a time and outputs zero or
more (key, value) pairs; and one writes a program for Reduce that processes an
input of (key, all values for key). The iteration over input lines is done
automatically by the MapReduce framework. The intern would like to know who
are the influential Twitter users most similar to their candidate, and would like
to use Hadoop for this. The intern uses an input file containing information from
Twitter (which is an asymmetrical social network) about which users “follow”
which other users. If user a follows b, the entry line is (a, b) – you can assume this
data is already sharded in HDFS and can be loaded from there. Can you help the
intern? Write a MapReduce program (Map and Reduce separately) that outputs
the list of all users U who satisfy the following three conditions simultaneously:
U has at least 100 million followers, and U herself/himself follows fewer than 10
users, and U follows at least one user V who in turn has at least 10 million
followers (e.g., @BarackObama would be such a U). You can chain Mapreduces if
you want (but only if you must, and even then, only the least number). Your
program must be as highly parallelizable as possible. Correctness is paramount,
though you should try to make it as fast as possible. As a rule, all Mapreduce
programs must avoid duplicates in the final output. That is, the same output
element must not be repeated multiple times in the output.

4. A rival campaign manager believes that finding the best donors is the way to go.
They use the same dataset from the previous question to instead find all user
pairs (U,V) such that: (i) both U and V have at least 100 million followers each,
and (ii) U and V follow at least 100 accounts in common (excluding each other).
Note that U and V may or may not follow each other (either way)! Write a

 4

Mapreduce program for this. Same instructions as the first Mapreduce question
in this series apply. As a rule, all Mapreduce programs must avoid duplicates in
the final output. That is, the same output element must not be repeated multiple
times in the output. Further if the output type is a pair (a,b), the pair must appear
only once - both (a,b) and (b,a) appearing is not allowed.

5. One of the social media billionaires is considering running for President. They
run a social media named Quitter, and they have access to a lot of data inside the
company. As an intern in this campaign, you have the same social network
dataset (named D1) specified in the previous question ((a,b) directed pairs
indicating a follows b), but you also have an additional dataset (named D2) with
entries (a, start_time, end_time) indicating that user a was online starting
start_time and ending at end_time. The data is only for one day. All times are
hh:mm:ss. However, each user a may have multiple entries in D2 (since users log
in simultaneously). Write a Mapreduce program that extracts all pairs of users
(a,b) such that: (i) a and b follow each other, and (ii) a and b were online
simultaneously at least once during that day. Same instructions as the first
Mapreduce question in this series apply. Please ensure that a Map stage reads
data from only one input dataset (i.e., if a Map reads directly from D2, don’t use
it to also read from D1. And vice-versa.) – this is good practice consistent with
good Map programming practices. As a rule, all Mapreduce programs must
avoid duplicates in the final output. That is, the same output element must not
be repeated multiple times in the output. Further if the output type is a pair (a,b),
the pair must appear only once - both (a,b) and (b,a) appearing is not allowed.

6. Questioning and Reforming the election system seem all the rage nowadays.
There are some ways distributed systems folks can help with elections. Someone
at the election office thinks MapReduce could be useful for “instant runoff
voting” in primaries. (Fun fact: several states, including Alaska, now use instant
runoff voting!) Here’s how instant runoff voting works. Consider an election
with three candidates on the ballot – A, B, C. Every voter ranks the three
candidates as first preference, second preference, and last preference. Between
any two candidates X and Y, if a majority of voters ranked X above Y, then X
dominates Y (and vice versa)—note that this only takes into account X and Y’s
relative rankings, not where they appear in the preference order, or where the
third candidate appears. A Condorcet winner is a candidate that dominates all
other candidates (pair wise) on the ballot. By definition an election can have at
most one Condorcet winner (however, there may be zero).

You are given a dataset of votes from N voters (N is odd and large, and so
dataset is sharded), where each vote V has three fields V.1, V.2, V.3, respectively
for the first, second, and third preference votes of that voter. Each line of input is

 5

one such voter’s vote V (input to initial Map function). Write a MapReduce
program that outputs either the unique single Condorcet winner among the three
candidates A, B, or C, or if there is no single Condorcet winner, then it outputs
the list of candidate(s) with the highest Condorcet count (those that dominate the
most number of candidates). For background -- in MapReduce, one writes a
program for Map that processes one input line at a time and outputs zero or
more (key, value) pairs; and one writes a program for Reduce that processes an
input of (key, all values for key). The iteration over input lines is done
automatically by the MapReduce framework. You can assume this data is
already sharded in HDFS and can be loaded from there. Each line is one vote V
and is read as the value and the key is empty (in the first by Map stage). Note
that intermediate data from a Map is not available for subsequent stages!

Correctness is important, efficiency is secondary (but you must have some
parallelism). Write either pseudocode, or clear unambiguous descriptions. As a
rule, all Mapreduce programs must avoid duplicates in the final output. That is,
the same output element must not be repeated multiple times in the output.
Further if the output type is a pair (a,b), the pair must appear only once - both
(a,b) and (b,a) appearing is not allowed.

7. At a presidential debate, one of the candidates loudly proclaims, “You idiots are
so slow!”. Then the moderator asks, “Can you elaborate please?” At a loss for
words, the candidate reaches deep into their CS425 knowledge and screams,
“You’re all so slow! You’re all doing push gossip. I do pull gossip, and even with
fixed fanout, it converges in O(log(log(N)) time!” Are they right? If yes, give a
proof (informal proof ok). If they are wrong, give a proof (informal proof). (Note:
Push gossip and pull gossip mentioned here are the same protocols discussed in
lecture)

8. One of the less popular candidates is polling at very small numbers in most of
the states. They want to analyze the “topology-aware gossip” protocol you’ve
seen in lecture. However, instead of the lecture slide example of 2 subnets joined
by 1 router, here we have a total of N nodes (processes), evenly spread out across
√ N subnets (each subnet containing √ N nodes), all joined by 1 router. The
subnets are numbered S0, S1, S2, … S(√ N-1). All these √ N subnets are connected
together via 1 router. You can assume all nodes have a full membership list, and
there are no failures (messages or processes). The topology-aware gossip works
as follows. Consider a process Pj choosing gossip targets. The process’ gossip
targets depend on the subnet Si that it lies in. During a gossip round, the process
Pj selects either b “inside-subnet Si gossip targets” with probability (1-1/√ N), OR
b “outside-subnet Si gossip targets” with probability 1/√ N. The only
“restriction” is that after process Pj is infected, for the next O(log(√ N)) rounds Pj

 6

picks only inside-subnet targets (no outside-subnet targets) -- thereafter in a
gossip round at Pj, either all its targets are inside-subnet or all are outside-
subnet. Inside-subnet gossip targets from Pj (in Si) are selected uniformly at
random from among the processes of Si. Outside-gossip targets from Pj (in Si) are
only picked from the processes in the “next” subnet S((i+1)mod√ N), and they are
picked uniformly at randomly from the processes lying in that “next” subnet.
The gossiping of a message does not stop (i.e., it is gossiped forever based on the
above protocol). Does this topology-aware gossip protocol satisfy both the
requirements of: (i) O(log(N)) average dissemination time for a gossip (with one
sender from any subnet), and (ii) an O(1) messages/time unit load on the router
at any time during the gossip spread? Justify your answers.

9. One of the campaigns is always looking for shortcuts. Their distributed system
uses a failure detector but to “make it faster”, they have made the following
changes. For each of these changes (in isolation), say what is the one biggest
advantage and the one biggest disadvantage of the change (and why). Keep each
answer to under 50 words (give brief justifications).

a. They use Gossip-style failure detection, but they set Tcleanup = 0.
b. They use SWIM-style failure detection, but they removed the Suspicion

feature.
c. They use SWIM-style failure detection, but they removed the round robin

pinging + random permutation, and instead just randomly select each
ping target.

10. An intern in the Independent Party campaign designs an independent
SWIM/ping-based failure detection protocol, for an asynchronous distributed
system, that works as follows. Assume there are N=M*K*R processes in the
system (M, K, R, are positive integers, each > 2). Arrange these N processes in a
MxKxR 3-dimensional matrix (tesseract), with M processes in each column, and
K processes in each row, and R processes in the 3rd dimension (aisles). All
processes maintain a full membership list, however pinging is partial. Each
process Pijk (in i-th row and j-th column and k-th aisle) periodically (every T time
units) marks a subset of its membership list as its Monitoring Set. The monitoring
set of a given process, once selected, does not change. The monitoring set of Pijk
contains: i) all the processes in in its own column P*jk , ii) all the other processes in
its own row Pi*k , and ii) all the processes in in its own aisle Pij* . At this point,
there are two options available to you: Option 1 – Each process sends heartbeats
to its monitoring set members. Option 2 – Each process periodically pings all its
monitoring set members; pings are responded to by acks, just like in the SWIM
protocol (but there are no indirect pings or indirect acks.). Failure detection
timeouts work as usual: Option 1 has the heartbeat receiver timeout waiting for a

 7

heartbeat, while Option 2 has the pinging process (pinger) time out. The
suspected process is immediately marked as failed. This is run in an
asynchronous distributed system.

a. How many failures does Option 1 take to violate completeness? That is,
find the value L so that if there are (L-1) simultaneous failures, all of them
will be detected, but if there are L simultaneous failures then not all of
them may be detected.

b. Answer the same above question for Option 2.
c. An opposition party candidate claims that for K=R=2, both Option 1 and

Option 2 provide completeness for all scenarios with up to (and including)
9 simultaneous failures. You gently respond that they are wrong and that
it also depends on M. What are all the values of M (given K=R=2) for
which your opponent’s claim above is true? Justify your answer clearly.

d. A different opponent claims this algorithm satisfies accuracy for S
simultaneous failures or fewer, for both Option 1 and Option 2. Find the
value of S (as a function of K, M, R, N, etc.).

====== END OF HOMEWORK 1 =====

