CS 425 / ECE 428 Distributed Systems Fall 2023

Aishwarya Ganesan W/ Indranil Gupta (Indy) *Lecture 27: Security*

All slides © IG

Security Threats

- Leakage
 - Unauthorized access to service or data
 - E.g., Someone knows your bank balance

• Tampering

- Unauthorized modification of service or data
- E.g., Someone modifies your bank balance

Vandalism

- Interference with normal service, without direct gain to attacker
- E.g., Denial of Service attacks

Common Attacks

- Eavesdropping
 - Attacker taps into network
- Masquerading
 - Attacker pretends to be someone else, i.e., identity theft
- Message tampering
 - Attacker modifies messages
- Replay attack
 - Attacker replays old messages
- **Denial of service**: bombard a port

Addressing the Challenges: CIA Properties

- Confidentiality
 - Protection against disclosure to unauthorized individuals
 - Addresses Leakage threat
- Integrity
 - Protection against unauthorized alteration or corruption
 - Addresses Tampering threat
- Availability
 - Service/data is always readable/writable
 - Addresses Vandalism threat

Policies vs. Mechanisms

- Many scientists (e.g., Hansen) have argued for a separation of policy vs. mechanism
- A security policy indicates *what* a secure system accomplishes
- A security mechanism indicates *how* these goals are accomplished
- E.g.,
 - Policy: in a file system, only authorized individuals allowed to access files (i.e., CIA properties)
 - Mechanism: Encryption, capabilities, etc.

Mechanisms: Golden A's

- Authentication
 - Is a user (communicating over the network) claiming to be Alice, really Alice?
- Authorization
 - Yes, the user is Alice, but is she allowed to perform her requested operation on this object?
- Auditing
 - How did Eve manage to attack the system and breach defenses? Usually done by continuously logging all operations.

Designing Secure Systems

- Don't know how powerful attacker is
- When designing a security protocol need to
- 1. Specify Attacker Model: Capabilities of attacker

(Attacker model should be tied to reality)

- 2. Design security mechanisms to satisfy policy under the attacker model
- 3. Prove that mechanisms satisfy policy under attacker model
- 4. Measure effect on overall performance (e.g., throughput) in the common case, i.e., no attacks

• Basic Cryptography

Basic Security Terminology

- **Principals**: processes that carry out actions on behalf of users
 - Alice
 - Bob
 - Carol
 - Dave
 - Eve (typically evil)
 - Mallory (typically malicious)
 - Sara (typically server)

- Key = sequence of bytes assigned to a user
 - Can be used to "lock" a message, and only this key can be used to "unlock" that locked message

----BEGIN PGP PUBLIC KEY BLOCK----

pFRUQINAGoBEACuk6ze2V2pZtScf1Ul25N2CX19AeL7sVYwnyrTYuWdG2FmJx4x DLTLVUazp2AEm/JhskulL/7VCZPyg7ynf+o20Tu9/6zUD7p0rnQA2k3Dz+7dKHHh eEsIl5EZyFy1XodhUnEIjel2nGe6f1007Dr3UIEQw5JnkZyqMcbLCu9sM2twFyfa a8JNghfjltLJs3/UjJ8ZnGGByMmWUrWQUItMpQjGr99nZf4L+IPxy2i808WQewB5 <snip>

fvfidBGruUYC+mTw7CusaCOQbBuZBiYduFgH8hRW97KLmHn0xzB1FV++KI7syo8q XGo8Un24WP40IT78XjKO =nUop

----END PGP PUBLIC KEY BLOCK-----

Encryption

Message (sequence of bytes) + Key →
(Encryption) →

Encoded message (sequence of bytes)

Encoded Message (sequence of bytes) + Key →
(Decryption) →

Original message (sequence of bytes)

• No one can decode an encoded message without the key

Two Cryptography Systems

I. Symmetric Key systems:

- $K_A =$ Alice's key; secret to Alice
- K_{AB} = Key shared only by Alice and Bob
- Same key (K_{AB}) used to both encrypt and decrypt a message

•E.g., DES (Data Encryption Standard): 56 b key operates on 64 b blocks from the message

Two Cryptography Systems (2)

II. Public-Private Key systems:

- K_{Apriv} = Alice's private key; known only to Alice
- K_{Apub} = Alice's public key; known to *everyone*
- Anything encrypted with K_{Apriv} can be decrypted only with K_{Apub}
- Anything encrypted with K_{Apub} can be decrypted only with K_{Apriv}
- •RSA and PGP fall into these category
 - RSA = Rivest Shamir Adleman
 - PGP = Pretty Good Privacy
 - Keys are several 100s or 1000s of b long
 - Longer keys => harder for attackers to break
 - Public keys maintained via PKI (Public Key Infrastructure)

Public-Private Key Cryptography

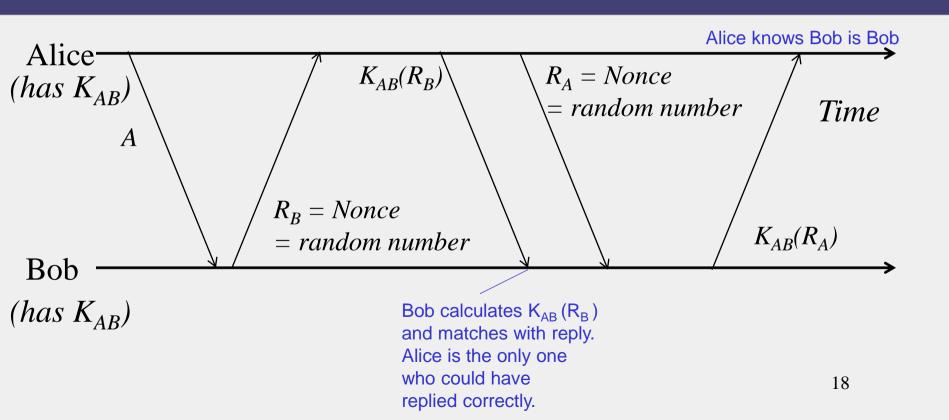
- If Alice wants to send a secret message M that can be read only by Bob
 - Alice encrypts it with Bob's public key
 - $\quad K_{\text{Bpub}}(M)$
 - Bob only one able to decrypt it
 - $\ K_{\text{Bpriv}}(K_{\text{Bpub}}(M)) = M$
 - Symmetric too, i.e., $K_{Apub}(K_{Apriv}(M)) = M$

Shared/Symmetric vs. Public/Private

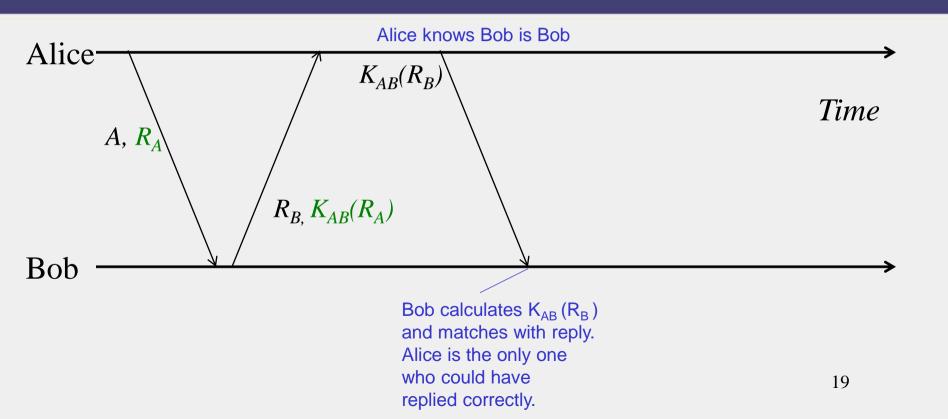
- Shared keys reveal too much information
 - Hard to revoke permissions from principals
 - E.g., group of principals shares one key
 - \rightarrow want to remove one principal from group

 \rightarrow need everyone in group to change key

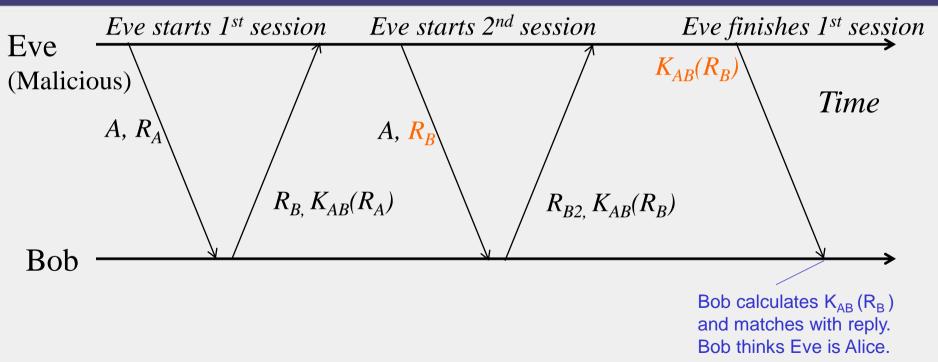
- Public/private keys involve costly encryption or decryption
 - At least one of these 2 operations is costly
- Many systems use public/private key system to generate shared key, and use latter on messages

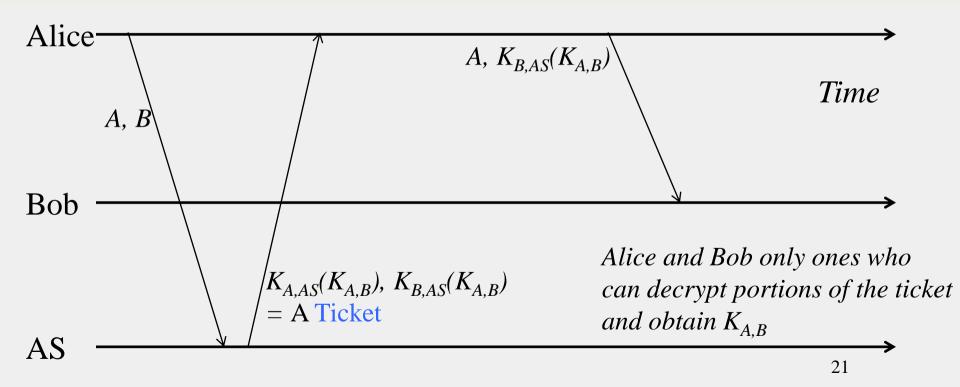


- How to use cryptography to implement
 - I. Authentication
 - II. Digital Signatures
 - **III.** Digital Certificates


I. Authentication

- Two principals verify each others' identities
- Two flavors
 - Direct authentication: directly between two parties
 - Indirect authentication: uses a trusted thirdparty server
 - Called authentication server
 - E.g., A Verisign server


Direct Authentication Using Shared Key


Why Not Optimize Number of Messages?

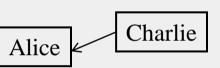
Unfortunately, This Subject to Replay Attack

Indirect Authentication Using Authentication Server and Shared Keys

II. Digital Signatures

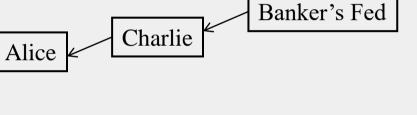
- Just like "real" signatures
 - Authentic, Unforgeable
 - Verifiable, Non-repudiable
- To sign a message M, Alice encrypts message with her own private key
 - Signed message: $[M, K_{Apriv}(M)]$
 - Anyone can verify, using Alice's public key, that Alice signed it
- To make it more efficient, use a one-way hash function, e.g., SHA-1, MD-5, etc.
 - Signed message: [M, K_{Apriv}(Hash(M))]
 - Efficient since hash is fast and small; don't need to encrypt/decrypt full message

III. Digital Certificates


- Just like "real" certificates
- Implemented using digital signatures
- Digital Certificates have
 - Standard format
 - Transitivity property, i.e., chains of certificates
 - Tracing chain backwards must end at trusted authority (at root)

Example: Alice's Bank Account

- 1. Certificate Type: Account
- 2. Name: Alice



- 4. Certifying Authority: Charlie's Bank
- 5. Signature
 - K_{Cpriv}(Hash(Name+Account number))

Charlie's Bank, in Turn has another Certificate

- 1. Certificate Type: Public Key
- 2. Name: Charlie's Bank
- 3. Public Key: K_{Cpub}
- 4. Certifying Authority: Banker's Federation
- 5. Signature
 - K_{Fpriv}(Hash(Name+Public key))

Banker's Federation, Has Another Certificate From the Root Server

Alice

- 1. Certificate Type: Public Key
- 2. Name: Banker's Federation
- 3. Public Key: K_{Fpub}
- 4. Certifying Authority: Verisign
- 5. Signature
 - K_{verisign priv}(Hash(Name+Public key))

Banker's Fed

Charlie

Verisign

IV. Authorization

Access Control Matrix

- For every combination of (principal,object) say what mode of access is allowed
- May be very large (1000s of principals, millions of objects)
- May be sparse (most entries are "no access")
- Access Control Lists (ACLs) = per object, list of allowed principals and access allowed to each
 - Maintained at server
- **Capability Lists** = per principal, list of files allowed to access and type of access allowed
 - Could split it up into capabilities, each for a different (principal,file)
 - Can be handed (like certificates) to clients

Security: Summary

- Security Challenges Abound
 - Lots of threats and attacks
- CIA Properties are desirable policies
- Encryption and decryption
- Shared key vs Public/private key systems
- Implementing authentication, signatures, certificates
- Authorization

Announcements

- Grade inconsistency: please check between your Gradescope grades and Canvas grades
 - email cs-425-staff if Canvas does not yet show updated grades: do this within a week!
 - Otherwise we will be using your Canvas grades to calculate the final course grade!
- HW4 due this Friday 12/1 at 2 pm US Central
- MP4 due this Sunday, demos next Monday

Course Evaluations ("ICES")

- Please complete them online! (Search for mail from "ICES")
- Main purpose: to give us feedback on how useful this course was to you (and to improve future versions of the course)
- We won't see these evaluations until after you see your grades
- Answer all questions
- Please write your detailed feedback this is valuable for future versions of the course!