
CS 425 / ECE 428
Distributed Systems

Fall 2023
Aishwarya Ganesan

W/ Indranil Gupta (Indy)
Lecture 26 A: Stream Processing, Graph Processing

(and Optional Machine Learning) All slides © IG

• Why Stream Processing
• Storm

Stream Processing: What We’ll Cover

2

• Large amounts of data => Need for real-time views of
data
• Social network trends, e.g., Twitter real-time search
• Website statistics, e.g., Google Analytics
• Intrusion detection systems, e.g., in most datacenters

• Process large amounts of data
• With latencies of few seconds
• With high throughput

Stream Processing Challenge

3

• Batch Processing => Need to wait for entire computation
on large dataset to complete

• Not intended for long-running stream-processing

MapReduce?

4

Which one of these is NOT a stream processing job?

A) Uber
Calculating surge prices

B) LinkedIn
Aggregating updates into one email

C) Netflix
Understanding user behavior to improve personalization

D) TripAdvisor
Calculating earnings per day & fraud detection

E) None of them are stream processing
F) à ALL of them are stream processing jobs!

[https://www.youtube.com/watch?v=YUBPimFvcN4]

[http://www.vldb.org/pvldb/vol10/p1634-
noghabi.pdf]

[https://www.youtube.com/watch?v=p8qSWE_nAAE]

[https://www.youtube.com/watch?v=KQ5OnL2hMBY]

5

• Apache Project
• http://storm.apache.org/
• Highly active JVM project
• Multiple languages supported via API

• Python, Ruby, etc.

• Used by over 30 companies including
• Twitter: For personalization, search
• Flipboard: For generating custom feeds
• Weather Channel, WebMD, etc.

Enter Storm

6

http://storm.apache.org/

• Tuples
• Streams
• Spouts
• Bolts
• Topologies

Storm Components

7

• An ordered list of elements
• E.g., <tweeter, tweet>

• E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>
• E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

• E.g., <URL, clicker-IP, date, time>
• E.g., <coursera.org, 101.102.103.104, 4/4, 10:35:40>
• E.g., <coursera.org, 101.102.103.105, 4/4, 10:35:42>

Tuple

Tuple

8

• Sequence of tuples
• Potentially unbounded in number of tuples

• Social network example:
• <“Miley Cyrus”, “Hey! Here’s my new song!”>,
 <“Justin Bieber”, “Hey! Here’s MY new song!”>,
 <“Rolling Stones”, “Hey! Here’s my old song that’s still a super-hit!”>, …

• Website example:
• <coursera.org, 101.102.103.104, 4/4, 10:35:40>, <coursera.org,

101.102.103.105, 4/4, 10:35:42>, …

Stream

Tuple Tuple Tuple

9

• A Storm entity (process) that is a source of streams
• Often reads from a crawler or DB

Spout

Tuple Tuple Tuple

Tuple
Tuple

Tuple

10

• A Storm entity (process) that
• Processes input streams
• Outputs more streams for other bolts

Bolt

11

• A directed graph of spouts and bolts (and output bolts)
• Corresponds to a Storm “application”

Topology

12

• Can have cycles if the application
 requires it

Topology

13

• Operations that can be performed
• Filter: forward only tuples which satisfy a condition
• Joins: When receiving two streams A and B, output all pairs

(A,B) which satisfy a condition
• Apply/transform: Modify each tuple according to a function
• And many others

• But bolts need to process a lot of data
• Need to make them fast

Bolts come in many Flavors

14

• Have multiple processes (“tasks”) constitute a bolt
• Incoming streams split among the tasks
• Typically each incoming tuple goes to one task in the bolt

• Decided by “Grouping strategy”

• Three types of grouping are popular

Parallelizing Bolts

15

• Shuffle Grouping
• Streams are distributed evenly among the bolt’s tasks
• Round-robin fashion

Grouping

16

• Fields Grouping
• Group a stream by a subset of its fields
• E.g., All tweets where twitter username starts with [A-H,a-h,0-3] go to task 1, tweets

starting with [I-Q,i-q,4-6]go to task 2, tweets starting with [R-Z,r-z,7-9] go to task 3

Grouping

[A-H,a-h,0-3]

[I-Q,i-q,4-6]

[R-Z,r-z,7-9]
17

• All Grouping
• All tasks of bolt receive all input tuples

Grouping

18

• Master (Coordinator or Leader) node
• Runs a daemon called Nimbus
• Responsible for

• Distributing code around cluster
• Assigning tasks to machines
• Monitoring for failures of machines

• Worker node
• Runs on a machine (server)
• Runs a daemon called Supervisor
• Listens for work assigned to its machine
• Runs “Executors”(which contain groups of tasks)

• Zookeeper
• Coordinates Nimbus and Supervisors communication
• All state of Supervisor and Nimbus is kept here

Storm Cluster

Nimbus

Job Submission

ZK Cluster

W1 W2 W3 W4

Supervisor

W1 W2 W3 W4

Supervisor

W
or

ke
r N

od
es

19

• A tuple is considered failed when its topology (graph) of resulting tuples fails to
be fully processed within a specified timeout

• Anchoring: Anchor an output to one or more input tuples
• Failure of one tuple causes one or more tuples to replayed

Failures

20

• Emit(tuple, output)
• Emits an output tuple, perhaps anchored on an input tuple (first argument)

• Ack(tuple)
• Acknowledge that you (bolt) finished processing a tuple

• Fail(tuple)
• Immediately fail the spout tuple at the root of tuple topology if there is an

exception from the database, etc.
• Must remember to ack/fail each tuple

• Each tuple consumes memory. Failure to do so results in memory leaks.

API For Fault-Tolerance (OutputCollector)

21

Twitter’s Heron System (Optional Additional Slide)

• Fixes the inefficiencies of Storm’s acking mechanism (among other things)
• Uses backpressure: a congested downstream tuple will ask upstream tuples

to slow or stop sending tuples
1. TCP Backpressure: uses TCP windowing mechanism to propagate
backpressure
2. Spout Backpressure: node stops reading from its upstream spouts
3. Stage by Stage Backpressure: think of the topology as stage-based, and
propagate back via stages
• Use:

• Spout+TCP, or
• Stage by Stage + TCP

• Beats Storm throughput handily (see Heron paper) 22

• Processing data in real-time a big requirement today
• Storm

• And other sister systems, e.g., Spark Streaming, Heron, (LinkedIn’s
Samza, “Kafka”, etc.)

• Parallelism
• Application topologies
• Fault-tolerance

Summary: Stream Processing

23

• Distributed Graph Processing
• Google’s Pregel system

• Inspiration for many newer graph processing
systems: Piccolo, Giraph, GraphLab,
PowerGraph, LFGraph, X-Stream, etc.

Graph Processing: What We’ll Cover

24

• Large graphs are all around us
• Internet Graph: vertices are routers/switches and edges

are links
• World Wide Web: vertices are webpages, and edges are

URL links on a webpage pointing to another webpage
• Called “Directed” graph as edges are uni-directional

• Social graphs: Facebook, Twitter, LinkedIn
• Biological graphs: Brain neurons, DNA interaction

graphs, ecosystem graphs, etc.

Lots of Graphs

Source: Wikimedia Commons, Wikipedia

25

• Need to derive properties from these graphs
• Need to summarize these graphs into statistics
• E.g., find shortest paths between pairs of vertices

• Internet (for routing)
• LinkedIn (degrees of separation)

• E.g., do matching
• Dating graphs in match.com (for better dates)

• PageRank
• Web Graphs
• Google search, Bing search, Yahoo search: all rely on this

• And many (many) other examples!

Graph Processing Operations

26

• Because these graphs are large!
• Human social network has 100s Millions of vertices and

Billions of edges
• WWW has Millions of vertices and edges

• Hard to store the entire graph on one server and
process it
• On one beefy server: may be slow, or may be very

expensive (performance to cost ratio very low)
• Use distributed cluster/cloud!

Why Hard?

27

• Works in iterations
• Each vertex assigned a value
• In each iteration, each vertex:

1. Gather: Gathers values from its immediate neighbors
(vertices who join it directly with an edge). E.g., @A:
BàA, CàA, DàA,…

2. Apply: Does some computation using its own value and its
neighbors’ values.

3. Scatter: Updates its new value and sends it out to its
neighboring vertices. E.g., AàB, C, D, E

• Graph processing terminates after: i) fixed iterations, or ii)
vertices stop changing values

Typical Graph Processing Application

A

B
C

D
E

28

• Multi-stage Hadoop
• Each stage == 1 graph iteration
• Assign vertex ids as keys in the reduce phase
J Well-known
L At the end of every stage, transfer all vertices over

network (to neighbor vertices)
L All vertex values written to HDFS (file system)
L Very slow!

Hadoop/MapReduce to the Rescue?

29

• “Think like a vertex”
• Originally by Valiant (1990)

Bulk Synchronous Parallel Model

Source: http://en.wikipedia.org/wiki/Bulk_synchronous_parallel
30

http://en.wikipedia.org/wiki/Bulk_synchronous_parallel

• “Think like a vertex”
• Assign each vertex to one server
• Each server thus gets a subset of vertices
• In each iteration, each server performs Gather-Apply-Scatter

for all its assigned vertices
• Gather: get all neighboring vertices’ values

• Apply: compute own new value from own old value and gathered
neighbors’ values

• Scatter: send own new value to neighboring vertices

Basic Distributed Graph Processing

A

B
C

D
E

31

• How to decide which server a given vertex is
assigned to?

• Different options
• Hash-based: Hash(vertex id) modulo number of servers

• Remember consistent hashing from P2P systems?!
• Locality-based: Assign vertices with more neighbors to the

same server as its neighbors
• Reduces server to server communication volume after each iteration
• Need to be careful: some “intelligent” locality-based schemes may

take up a lot of upfront time and may not give sufficient benefits!

Assigning Vertices

32

• Pregel uses the leader/worker model
• Leader (one server)

• Maintains list of worker servers
• Monitors workers; restarts them on failure
• Provides Web-UI monitoring tool of job progress

• Worker (rest of the servers)
• Processes its vertices
• Communicates with the other workers

• Persistent data is stored as files on a distributed storage system
(such as GFS or BigTable)

• Temporary data is stored on local disk

Pregel System By Google

33

1. Many copies of the program begin executing on a cluster

2. The leader (“Master” originally) assigns a partition of input (vertices) to each worker
• Each worker loads the vertices and marks them as active

3. The leader instructs each worker to perform an iteration
• Each worker loops through its active vertices & computes for each vertex

• Messages can be sent whenever, but need to be delivered before the end of the iteration (i.e., the
barrier)

• When all workers reach iteration barrier, leader starts next iteration

4. Computation halts when, in some iteration: no vertices are active and when no messages
are in transit

5. Leader instructs each worker to save its portion of the graph

Pregel Execution

34

• Checkpointing
• Periodically, leader instructs the workers to save state of their partitions to

persistent storage
• e.g., Vertex values, edge values, incoming messages

• Failure detection
• Using periodic “ping” messages from leader à worker

• Recovery
• The leader reassigns graph partitions to the currently available workers

• The workers all reload their partition state from most recent available
checkpoint

Fault-Tolerance in Pregel

35

• Shortest paths from one vertex to all vertices
• SSSP: “Single Source Shortest Path”

• On 1 Billion vertex graph (tree)
• 50 workers: 180 seconds
• 800 workers: 20 seconds

• 50 B vertices on 800 workers: 700 seconds (~12 minutes)
• Pretty Fast!

How Fast Is It?

36

• Lots of (large) graphs around us
• Need to process these
• MapReduce not a good match
• Distributed Graph Processing systems: Pregel by Google
• Many follow-up systems

• Piccolo, Giraph: Pregel-like
• GraphLab, PowerGraph, LFGraph, X-Stream: more

advanced

Summary: Graph Processing

37

CS 425 / ECE 428
Distributed Systems

Fall 2023
Aishwarya Ganesan

w/ Indranil Gupta (Indy)
Lecture 26 A (contd.): Machine Learning (in

syllabus)

Basic ML: SGD

“Machine learning is nothing but damn statistics.” – A lot of people

• Machine learning trains “models” (computer representations)
• Training vs. Inference (latter called Prediction, or Model Serving)
• Supervised vs. Unsupervised learning
• SGD = Stochastic Gradient Descent

• Minimize an objective function that is smooth and differentiable
• Popular variants: AdaGrad (adaptive gradient), Adam (adaptive moment),

RMSProp
• A common strawman application for many distributed ML papers!

39

Basic Neural Networks

• ANN = Artificial Neural Network
Another kind of “model”
A common form of representation learning
Used widely in vision, NLP, …

• Graphs of operators
• Operators can be computationally heavy
• Graph can be in “stages” or “layers”

• Common: All to all communication between operators in consecutive stages
• Most edges have a set of associated weights (parameters). (Exceptions:

activation funcs (ReLU), dropout). The collection of these weights IS the model.

A Perceptron layer

40

Basic Neural Networks (2)

• Data passed into train passes “forwards”, followed by calculating error against known
result (supervised learning)
• followed by “backward” pass that adjusts/updates the weights at operators (so that

for an incorrect training pass, if the same input were to be passed through, the
result would be correct)

• Data between operators: tensors (multi-dimensional vectors)
• Default: train on one item (forward + backward), followed by next item

• Extension: train on a mini-batch of items
• After model is trained, Prediction/Inference needs only forward pass
• Emerging area: Online training : do both training and inference together (aka Continual

training)
• Hyperparameter: configuration parameter for your model (not to be confused with a

model “weight” == parameter), e.g., batch size
41

• FFNN: feed forward neural net (no loops)
• DNN: Deep NN

• More than one stage
• “Hidden” layers between input and output

• CNN: Convolutional NN
• DNN + additional layers for convolutions
• Transform data, e.g., sequence of filters that result in an activation/detection, e.g., image.
• E.g., Facebook photo captioning

• RNN: Recurrent NN
• DNN + loops within layer (e.g., time aspect (e.g., GIF), sequential aspects)
• E.g., auto-correction on your phone

• Other types: GNN (graph neural net), Transformer, …
• A few neural nets used in evaluation of distributed machine learning

• Inception(v3), (G)NMT, Resnet,…

ANN Types: FFNN, CNNs, RNNs

42

Distributed Machine Learning

Training data – collection of input and output labels xi, yi of size N
Learn model weights w
Model size and N can be huge

Centralized Machine Learning
Slow and often infeasible

Distributed Machine Learning
Parallelize via Multiple workers
 “Parameter Server” to aggregate data from workers
 from current iteration and start next iteration at workers.

Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in Neural Information Processing Systems (NeurIPS) 25 (2012). 43

Kinds of Parallelism

Data parallelism: multiple workers run same model, different data is sent to
each device, data “batched” into mini-batches
Workers synchronize after each mini-batch

1. Parameter Server approach
2. All-Reduce approach – workers multicast weights to all other workers

Variant: Asynchronous training

Model parallelism: same model (DNN graph) is split across multiple devices,
one input passed through collection of devices at a time.

Layer 1

Layer 4

Layer 2 Layer3

L1

L4

L2 L3

L1

L4

L2 L3

L1

L4

L2 L3

worker 1 worker 2

Abadi, Martín, et al. "TensorFlow: a system for Large-Scale machine learning." 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016. 44

TensorFlow

Built by Google
Framework for large-scale training and inference
Hides details of distribution
Uses dataflow graphs to represent computation, shared state, and
operations that mutate state
Dataflow captures structure of computation in ML
Extensible, runtime contains over 200 standard operations
Support for CPUs, GPUs, and TPUs (Tensor Processing Units)
Different communication protocols

Abadi, Martín, et al. "TensorFlow: a system for Large-Scale machine learning." 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). 2016. 45

Image classifier using TensorFlow API

1. Construct a graph representing the model.
x = tf.placeholder(tf.float32, [BATCH_SIZE, 784]) # Placeholder for input.
y = tf.placeholder(tf.float32, [BATCH_SIZE, 10]) # Placeholder for labels.

W_1 = tf.Variable(tf.random_uniform([784, 100])) # 784x100 weight matrix.
b_1 = tf.Variable(tf.zeros([100])) # 100-element bias vector.
layer_1 = tf.nn.relu(tf.matmul(x, W_1) + b_2) # Output of hidden layer.

W_2 = tf.Variable(tf.random_uniform([100, 10])) # 100x10 weight matrix.
b_2 = tf.Variable(tf.zeros([10])) # 10-element bias vector.
layer_2 = tf.matmul(layer_1, W_2) + b_2 # Output of linear layer.

2. Add nodes that represent the optimization algorithm.
loss = tf.nn.softmax_cross_entropy_with_logits(layer_2, y)
train_op = tf.train.AdagradOptimizer(0.01).minimize(loss)

3. Execute the graph on batches of input data.
with tf.Session() as sess: # Connect to the TF runtime.

sess.run(tf.initialize_all_variables()) # Randomly initialize weights.
for step in range(NUM_STEPS): # Train iteratively for NUM_STEPS.
 x_data, y_data = ... # Load one batch of input data.
 sess.run(train_op, {x: x_data, y: y_data}) # Perform one training step.

Abadi, Martín, et al. "TensorFlow: a system for Large-Scale machine learning." 12th USENIX symposium on operating systems design and implementation (OSDI 16). 2016. 46

PyTorch

Another popular ML framework originally developed by Meta
Tesla Autopilot, Uber's Pyro, Hugging Face's Transformers
Dynamic computation graphs
Automatic computation of gradients
Implements many algorithms and components
Domain-specific – TorchText, TorchVision, and TorchAudio – include datasets
Tensors – n-dimensional arrays
Module – define what makes up the model and a forward member function.
E.g., Linear Module

weight and bias as parameters
forward function generates output as input * weight + bias

47

Example with DistributedDataParallel

dist.init_process_group("gloo", rank=rank, world_size=world_size) # create default process group

 model = nn.Linear(10, 10).to(rank) # create local model
 ddp_model = DDP(model, device_ids=[rank]) # construct DDP model

 # define loss function and optimizer
 loss_fn = nn.MSELoss()

 optimizer = optim.SGD(ddp_model.parameters(), lr=0.001)

 # forward pass
 outputs = ddp_model(torch.randn(20, 10).to(rank))
 labels = torch.randn(20, 10).to(rank)

 # backward pass

 loss_fn(outputs, labels).backward()

 # update parameters
 optimizer.step()

48

Jax

• ML framework from Google
• Provides a familiar NumPy-style API
• Multiple backends, including CPU, GPU, & TPU
• grad: automatic differentiation
• jit: compilation
• vmap: auto-vectorization
• pmap: automatic parallelization

49

Other ML

Distributed ML
assumes homogenous data across workers

Federated Machine Learning
allows heterogeneous data across workers
workers may be datacenters or mobile devices
failures, possibly privacy issues.
E.g., Google’s Federated learning to predict keystrokes from
mobile devices

50

Summary of this Lecture, and one more video to watch!

Emerging topics in Distributed Computing
• Stream Processing (in syllabus)
• Graph Processing (in syllabus)
• Machine Learning (in syllabus)

• Additional Video on Course website (In Syllabus, NOT optional): Spark

