
A dA/ Algorithm for Mutual Exclusion
in Decentralized Systems

MAMORU MAEKAWA
University of Tokyo

An algorithm is presented that uses only c& messages to create mutual exclusion in a computer
network, where N is the number of nodes and c a constant between 3 and 5. The algorithm is
symmetric and allows fully parallel operation.

Categories and Subject Descriptors: D.4.1 [Operating Systems]: Process Management-mutual
exclusion; C.2.1 [Computer Systems Organization]: Network Architecture and Design-network
communications C.2.4 [Computer Systems Organization]: Distributed Systems-network operat-
ing systems

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Computer networks, decentralized systems

1. INTRODUCTION

Proposed is an algorithm that uses only c &’ messages to create mutual exclusion
in a computer network, where N is the number of nodes and c a constant between
3 and 5. It is assumed that the nodes communicate only by messages and do not
share memory. An error-free underlying communications network supports mes-
sage transfers in which transit times may vary but messages between two nodes
are delivered in the order sent.

The creation of mutual exclusion in a computer network under distributed
control is not trivial. Ricart and Agrawala [8] proposed an algorithm that uses
2(N - 1) messages: (N - 1) messages to convey a request to all other nodes and
(N - 1) messages to obtain permissions from them. It is thus based on a
unanimous consensus rule. The algorithm requires that each node requesting
mutual exclusion communicate to all other nodes. It is a distributed algorithm,
in the sense that each node always bears an equal amount of responsibility to
control mutual exclusion and that each node is required to perform an equal
amount of work to obtain mutual exclusion, such as the number of request
messages. The voting technique used in Thomas [ll] is based on a majority
consensus rule and requires that a node requesting mutual exclusion obtain a
permission vote from only a majority of the nodes. Thus, in the best case, the

Author’s address: Department of Information Science, Faculty of Science, University of Tokyo,
7-3-l Hongo, Bunkyo-ku Tokyo, 113 Japan.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2071/85/0500-0145 $00.75

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985, Pages 145-159.

146 l Mamoru Maekawa

number of permission messages required to obtain mutual exclusion is reduced
to a half, N/2. It is also a distributed algorithm in the above sense. The approach
was extended by Gifford [5] and Skeen [lo] to allow nodes to cast more than one
vote. In these weighted voting schemes, it was sufficient to obtain a majority of
the votes to obtain mutual exclusion, not necessarily from a majority of the
nodes. Garcia-Molina and Barbara then analyzed the relationship between
weighted voting and sets of nodes with pairwise nonnull intersections [4]. These
weighted voting schemes enjoy the same advantage as the protocol proposed in
this paper, in that communication with all nodes in the system is not required.
They are not distributed algorithms, however, because nodes with higher weights
bear more responsibility to control mutual exclusion than others. In fact, if a
particular node has a full weight and all others have no weight, the algorithm is
reduced to a centralized control.

The algorithm presented in this paper is a distributed algorithm and requires
only 3fi messages per mutual exclusion: m messages to convey a request,
fi messages to obtain permissions, and fi messages to release mutual exclu-
sion. It can be proven that this number is optimal for distributed algorithms.
The approach taken parallels the voting technique used in Thomas. It also uses
deferral, the technique used in Ricart and Agrawala. An additional technique,
relinquishment, is used, however, to avoid deadlocks.

2. REQUEST RESOLUTION

In distributed systems, each network node issues a mutual exclusion request at
an arbitrary time. In order to arbitrate these requests, any pair of two requests
must be known to one of the arbitrators. Since nodes themselves must serve as
arbitrators, any pair of two requests must reach to a certain common node. If we
assume that node i obtains a permission from each member of a subset Si of the
nodes of the network to obtain mutual exclusion then there must exist at least
one common node between a pair of Si and Sj for any i and j SO that the common
node can serve as an arbitrator. Therefore, the Si’s must satisfy the pairwise
nonnull intersection property. Assuming that the network consists of N nodes
numbered from 1 to N, this nonnull intersection property is stated as follows:

(a) For any combination of i and j, 1 % i, j I N, Si n Sj # 0.

The request resolution rule then requires that when node i attempts to invoke
mutual exclusion, it send a REQUEST message to every member of Si and obtain
a permission from all of them. Since each member of Si serves as an arbitrator,
the requesting node knows that it is the only node that has been granted mutual
exclusion, when every member of Si returns a permission message. Node Si then
proceeds to its critical section. This nonnull intersection property is a necessary
condition for the Si’s SO that mutual exclusion requests can be resolved. In
addition, the following properties are required or desirable for truly distributed
algorithms:

(b) Si, 1 5 i I N, always contains i.
(c) The size of Si,] Si] , is K for any i. That is,

I&I = I&I = l&l = ... = I&l = K.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

A fi Algorithm for Mutual Exclusion in Decentralized Systems l 147

(d) Any j, 1 5 j 5 N, is contained in the D Si’S, 1 5 i I N.

Property (b) is included simply to reduce the number of messages to be sent and
received by a node, respectively, because, if a requesting node i is itself a member
of its own node subset Si, a permission from itself is obtained without a message
transmission. Properties (c) and (d) are included to have a truly distributed
algorithm. Property (c) implies that each node needs to send and receive the
same number of messages to obtain mutual exclusion. Property (d), on the other
hand, implies that each node serves as an arbitrator for the same number of
nodes. That is, each node bears an equal amount of responsibility for mutual
exclusion control.

A centralized algorithm assigns a single node as a controller (arbitrator) for
mutual exclusion management. It satisfies properties (a) and (c), where K = 1,
but violates property (d). Ricart and Agrawala’s algorithm satisfies all of the
above properties, where K = N and D = N. Thomas’s majority consensus
algorithm can also satisfy all the above properties, where K = N and D = N.
Weighted voting schemes satisfy property (a) but usually violate properties (c)
and (d).

3. THE CHOICE OF S’s

The selection of Si’s is not unique. There exists a number of ways to select a set
of Si’s that satisfies the above properties. From properties (b) and (d), each
member of Si can be contained in (D - 1) other subsets. Therefore, the maximum
number of subsets that satisfy property (a) is given by

(D - 1)K + 1.

Since N is desired to be set to this maximum number so that K is minimized for
a given N, we have

N = (D - l)K + 1.

Furthermore, K = D must always hold, because N is the number of distinct
members, which is given by KN/D, the total number of members divided by the
number of duplications of each member. N is thus related to K by

N = K(K - 1) + 1.

The problem of finding a set of Si’s that satisfies these conditions is equivalent
to finding a finite projective plane of N points. It is known that there exists a
finite projective plane of order k if lz is a power pm, of a prime p [l]. This finite
projective plane has k(k + 1) + 1 points. Hence, in our terms, a set of Si’s exists
if (K - 1) is a power of a prime. For other values of lz, we can create a set of Si’s
by relaxing conditions (c) and (d) to some extent. For values of N, which cannot
be expressed as K(K - 1) + 1, we can also apply the same method to create a
degenerated set of Si’s. The creation of Si’s is discussed in detail in Section 7.
Here, we only show examples for K = 2,3,4 and 5 (Figure 1).

From the above discussion, it is clear that K gives the optimal value for a given
N when all the properties (a)-(d) are required. With a fractional error, we see
that K = fi.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

148 l Mamoru Maekawa

Sl

s5

-53

S II

s2

S6

s7

S 10

s3

se
S 13

S-4
S 12

Fig. 1.

(cl

2. 3,

5. 6,
8. 9,

11. 12.

5. 8.

6. 9.

7. 10.

5. 10.

6. 8.

7. 9.

5. 9.

6. 10.

7. 8.

s, =

s, =

S IO =
S I4 =

S 18 =

s, =

s, =

s, =

s, =

S II =

s, =

S 13 =

S 12 =

s 15 =

s, =

S I7 =

S 16 =

S 19 =

s, =

S 21 =

S 20 =

s, = Il. 2. 3[

s, = 11. 4. 51

s, =)I. 6. 71

s, = 12. 4. 61

s, = 12. 5. 71

s, = 13. 4. 71

s, = 13. 5. 61

(b)

2.

6.

IO.

14.

16.

6.

7.

8.

9.

6.
7.

8.

9.

6.
7.

8.

9.

6.

7.

8.

9.

(4

3. 4. 51

7. 8. 91

11. 12. 131

15. 16, 171

19. 20. 211
10. 14. 1st
11. 15. 19i

12. 16, 2Of
13, 17. 211
11. 17. 2ot
10. 16. 2ll
13. 15. 181
12. 14. 191
12. 15. 211
13. 14. 2ot
10, 17. 191

11. 16. 1’31
13. 16. 191

12. 17. l8I
11. 14. 21t
10. 15. 201

Subsets of integers with pairwise nonnull intersection property. (a) K = 2; (b) K = 3;
(c) K = 4; (d) K = 5

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

A V% Algorithm for Mutual Exclusion in Decentralized Systems l 149

4. ALGORITHM

Each node executes an identical algorithm. The algorithm is based on the fact
that, if node i locks all members of Sip no other node can capture all its members
because of property (a). Therefore, when it invokes mutual exclusion, node i tries
to lock all members of Si. If it succeeds, it can enter its critical section. If it fails,
it waits for all its member nodes to be freed, at which point it captures and locks
them. It then enters its critical section. Since there is a danger of deadlock when
more than one node simultaneously requests mutual exclusion, a node will yield
to others if the priority of its request is lower than that of any other conflicting
request. The request’s priority is determined by the sequence number (timestamp)
of the request’s corresponding REQUEST message. A REQUEST with a smaller
sequence number is given higher priority and is said to precede other REQUESTS
with larger sequence numbers. If a newly arrived REQUEST at a member node
precedes the current locking REQUEST, the node sends an INQUIRE message
to the node originating the current locking REQUEST to inquire whether the
originating node will really succeed in capturing all its members. The originating
node will return a RELINQUISH message when it becomes ,apparent that the
node will not be able to capture all its members. On the other hand, if the
originating node has succeeded in capturing all its members, it will return a
RELEASE message only after it has completed its critical section operation.

The algorithm is now described below:

(1) When node i invokes mutual exclusion, it sends a REQUEST message to every
member of Si. Node i pretends to have received a REQUEST. The REQUEST message
is given a sequence number greater than any REQUEST message sent, received, or
observed at this node.

(2) Upon receiving a REQUEST, a member node of Si marks itself locked for the
REQUEST if it is not currently locked for another REQUEST, and then returns a
LOCKED message to the requesting node i. If the node is locked for a REQUEST
from another node, the REQUEST from node i is placed in the WAITING QUEUE
of the node. (These REQUEST messages placed in the WAITING QUEUE are called
outstanding REQUESTS.) It is then tested to determine whether the current locking
REQUEST or any other outstanding REQUEST at the node precedes the received
REQUEST. (See below for the definition of the locking REQUEST.) If so, a FAILED
message is returned to node i. Otherwise, an INQUIRE message is sent to the node
originating the current locking REQUEST to inquire whether this originating node
has succeeded in locking all its members. If an INQUIRE has already been sent for a
previous REQUEST and its reply message (either RELINQUISH or RELEASE) has
not yet been received, it is not necessary to send in INQUIRE. REQUEST A is said
to precede REQUEST B if (the sequence of number A < the sequence number of B)
or ((the sequence of number A = the sequence number of 23) and (the node number
of A < the node number of B)). Each node can be locked by only one REQUEST at a
time, and this REQUEST is called the locking REQUEST. Any subsequent RE-
QUESTS arrived at the node are placed in the WAITING QUEUE of the node in
decreasing order of the precedence defined above.

(3) When a node receives an INQUIRE message, it returns a RELINQUISH message if
it knows that it will not succeed in locking all its members; that is, it has received a
FAILED message from some of its members. By so doing, the node relinquishes its
member node to a more preceding REQUEST. This breaks a circular locking, which
is necessary to avoid deadlocks. The node cancels the LOCKED message previously
received from the member node. When the node has succeeded in locking all its
members and is in its critical section, it returns a RELEASE message, but only after

ACM Transections on Computer Systems, Vol. 3, No. 2, May 1985.

150 ’ Mamoru Maekawa

it has completed its critical section. If an INQUIRE message has arrived before it is
known whether the node will succeed or fail to lock all its members, a reply is deferred
until this becomes known. If an INQUIRE message has arrived after the node has
sent a RELEASE message, it is simply ignored.

(4) When a node receives a RELINQUISH message, it relieves itself of the current locking
REQUEST and then locks itself for the most preceding REQUEST in the WAITING
QUEUE. Thus, regardless of which REQUEST had caused the sending of an IN-
QUIRE, the node is locked for the REQUEST that happens to be most preceding
when a RELINQUISH message is received. The current locking REQUEST is placed
in the WAITING QUEUE, whereas the most preceding REQUEST is removed from
it. A LOCKED message is then returned to the node originating the new locking
REQUEST.

(5) If all members of Si have returned a LOCKED message, node i enters its critical
section.

(6) Upon completing the critical section, node i sends a RELEASE message to each
member of Si.

(7) When a node receives a RELEASE message, it relieves itself from the current locking
REQUEST. It deletes this locking REQUEST and then relocks itself for the most
preceding REQUEST in the WAITING QUEUE if the queue is not empty. A LOCKED
message is returned to the node originating the new locking REQUEST. If the
WAITING QUEUE is empty, the node marks itself unlocked.

(8) The above steps (l)-(7) are repeated for each mutual exclusion request.

5. AN EXAMPLE

Imagine a 13-node network using this algorithm. Initially, the sequence number
at each node is zero.

Figure 2a shows a sequence of mutual exclusion invocations in which nodes 7,
8, and 11 invoke mutual exclusion in the order below. They all send a REQUEST
message with a sequence number 1 to their respective members.

(1) Node 11 is the first to attempt mutual exclusion. Its REQUESTS have arrived at
nodes 12 and 13 and have locked them, but its REQUEST to node 1 is still on its way.

(2) Node 7 then invokes mutual exclusion. Its REQUESTS have arrived at nodes 2 and
10 and have locked them but its REQUEST to node 13 is still on its way.

(3) Node 8 then invokes mutual exclusion. It locks itself and sends a REQUEST to nodes
1, 9, and 10 but fails to lock node 10 because node 10 has already been locked by a
preceding REQUEST from node 7.

(4) The REQUEST message originating at node 11 has finally arrived at node 1, while
the REQUEST message from node 7 arrives at node 13. Node 1 then returns a
FAILED, whereas node 13 sends an INQUIRE message to node 11.

This sequence creates a situation where nodes 7, 8, and 11 circularly lock each
other. Node 8 receives a FAILED message and cannot enter its critical section.
Likewise, node 11 cannot enter its critical section because it receives a FAILED
message from node 1. Node 7 still waits because it has not received a LOCKED
from all its member nodes.

When an INQUIRE message has been received at node 11, node 11 knows that
it cannot enter its critical section and thus returns a RELINQUISH message to
node 13. This will cause node 13 to be released for the most preceding REQUEST
in its waiting queue, which is the REQUEST from node 7. This REQUEST then
locks node 13 and returns a LOCKED to node 7. Node 7 then can enter its
critical section (Figure 2b).

ACM Transactions on Computer Systems, Vol. 3, NO. 2, May 19%.

A fi Algorithm for Mutual Exclusion in Decentralized Systems l 151

Locked
by 11

Locked
by 11

0 10

Locked Locked

Locked

0 3

0 4

0 5

by a by 7
(3)

Sl = Il.

S2 = 12.
5 = 13.

s, = 14.

s, = 11.

se = 12.
s, = 12

Se = 11.

& = 13.

S 10 = 13.

S II = Il.

S I2 = 14.

s,, = 14.

2. 3. 41

5. 6. 111

6. 6. 131

6. 10. 111

5. 6. 71

6. 9. 121
7. 10. 131

6. 9. 101

7. 9. 11f
5. 10. 121

Il. 12. 131

7. ‘3. 121
5. 9. 131

Locked Lot ted

Locked
by 7

Locked Locked by 8

by a by 7

(4)

Fig. 2a. Circular locking. R = Request; L = Locked; F = Failed; I = Inquire; Q = Relinquish.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

152 l Mamoru Maekawa

0 3

0 4

0 5

0 9 6 0 8
b 0 7

Fig. 2b. Relinquishing.

Upon completing the critical section, node 7 deletes its REQUEST from its
member nodes by sending a RELEASE message. This will cause node 8 to
successfully lock all its members and enter its critical section. Finally node 11
completes its critical section.

It is possible that a new REQUEST is initiated during the above process.
Suppose that a REQUEST from node 3 has arrived at node 13 after the INQUIRE
message was sent but before the RELINQUISH message from node 11 arrives at
node 13. Since this REQUEST precedes any REQUEST at node 13, and since it
is known that an INQUIRE was sent, the REQUEST waits for a RELINQUISH.
When the RELINQUISH message is received at node 13, the REQUEST from
node 3 locks node 13 instead of the REQUEST from node 7. Node 3 will then
succeed in locking all its members when node 8 relinquishes itself to node 3.

6. PROOF

6.1 Mutual Exclusion

Assume the contrary, that more than one node are simultaneously in the critical
section. The following arguments show that this is not possible:

(1) All the nodes in the critical section must have received a LOCKED message
from all their respective member nodes (step 5).

(2) Since a node in a critical section never releases its member nodes until it
completes its critical section (step (6)), and since each member node returns
a LOCKED message only when it locks itself for the corresponding RE-
QUEST (steps (2) and (4)), there must be a node that is simultaneously
locked for more than one REQUEST owing to property (a).

(3) However, this contradicts the specification of the algorithm that allows only
one REQUEST to lock a node at any instance (steps (2) and (4)).

(4) Therefore, more than one node cannot simultaneously be in the critical
section.

6.2 Deadlock

Assume that deadlock is possible. Then there must exist a circular waiting among
the nodes requesting mutual exclusion. This is not possible, however, because

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

A fi Algorithm for Mutual Exclusion in Decentralized Systems l 153

Locked by 6

Locked by 4 Locked by 4

Fig. 3. A circular waiting. 1 waits for 2; 2 waits for 4 and 6; 4 waits for 1; 6 waits for 1.

(1) Any sequence number/node number pair (timestamp) of a REQUEST is
unique because the sequence number of each node is incremented for a new
REQUEST and each node number is unique (step 1). Any set of sequence
number/node number pairs can be uniquely ordered with the largest and the
smallest.

(2) Then, in this circular waiting, there must exist a node whose REQUEST’s
timestamp is preceded by those of both of its adjacent nodes in the circular
waiting. The removal of this preceded node leads to a break of the cycle.

(3) Two adjacent competing nodes in the circular waiting have at least one node
common as a member node due to property (a). Then at this common node,
two REQUESTS can be ordered in terms of their timestamps (step 2).

(4) If the preceding REQUEST cannot lock the node because the preceded node
is currently locking, it causes an INQUIRE message to be sent to the node
originating the preceded REQUEST (step 2). (Note that if a preceding
REQUEST can always lock a node, there will not be any circular waiting.)

(5) The node originating the preceded REQUEST will relinquish the completed
member node by returning a RELINQUISH message if it knows that it will
not succeed in locking all its members (step 3). By observation (2) above,
there exists a node whose REQUEST’s timestamp is preceded by those of
both of its adjacent nodes in the circular waiting. Since this node is in a
circular waiting, one of its REQUESTS must have arrived at one of its
member nodes later than a REQUEST from one of its adjacent nodes in the
circular waiting. Therefore, the node must receive a FAILED message
(step 2). The node then returns a RELINQUISH message. This breaks the
circular waiting and the node that has received the RELINQUISH will
succeed in locking all its member nodes (step 4).

Example. Let us assume that all REQUESTS in Figure 3 have the same
sequence number. Then the REQUEST from node 1 is most preceding. The
circular waiting is broken because the REQUESTS from node 4 and 6 are preceded

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

154 l Mamoru Maekawa

by the REQUESTS from node 1 and thus their members are relinquished. This
will allow node 2 to succeed in locking all its members and allow it to enter its
critical section.

6.3 Starvation

The starvation of node i occurs when other preceding REQUESTS are continu-
ously locking or waiting at a member of Si. In this case, a FAILED is returned
to node i, which will wait for a LOCKED message. A LOCKED message will
eventually be returned to node i from the member node when the REQUEST
originating at node i becomes the most preceding outstanding REQUEST at this
member node. This will occur after, at most, (K - 1) REQUESTS have been
processed at the member node, because any subsequent REQUEST that arrives
at the member node will have a sequence number larger than the current
REQUEST originating at node i. Therefore, in a finite time, node i will succeed
in locking this member node. Since this is true for every member node, node i
will succeed in locking all its member nodes in a finite time.

7. THE CREATION OF Si’S

The choice of Si’s affects the number of messages required to create mutual
exclusion. It is desirable to have Si’s that are symmetric and of which the size of
each subset is minimum. Symmetry is required to have a truly distributed system,
as discussed in Section 2. These two conditions are both satisfied when there
exists a finite projective plane of N points. Although it is known that a finite
projective plane of order k exists if k is a power of a prime, very little is known
about general finite projective planes for other values of k. The Bruck-Ryser
theorem [l] is the only result in this direction, and states that there exists no
finite projective plane of order k if either k - 1 or k - 2 is divisible by 4 and if k
cannot be expressed as the sum of two integral squares (k # a2 + b2 for a and b
nonnegative integers). If a corresponding finite projective plane does not exist or
if N is not expressed as K(K - 1) + 1, one or both of the above two conditions
must be sacrificed. We show two methods that create a near-optimal set of Si’s.

Method 1. Suppose that (K - 1) is not a power of a prime number. Then there
may not exist a corresponding finite projective plane. However, we can create a
degenerated set of Si’s for this value of K = L by the following method:

(a) We first create a symmetric set of Si’s for M where (M - 1) is a power of a
prime number and A4 is the smallest integer larger than L. In this set of Si’s
for K = M, each component is contained in M subsets.

(b) We then replace each component greater than N = L(L - 1) + 1 in this set
of Si’s for K = M by a number smaller than or equal to N = L(L - 1) + 1.
Then each component will be contained in L subsets in the resulting set of
Si’s. We assume that this replacement is made by a different number each
time. The resulting set of Si’s is not symmetric in the sense that the size of
Si is not always L.

The mutual exclusion algorithm using these Si’s produces a somewhat unbalanced
performance for nodes because some node may have to send an extra message.
But, on the average, the load of each node is balanced. Therefore, the number of
ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

A fi Algorithm for Mutual Exclusion in Decentralized Systems l 155

messages per mutual exclusion remains the same as that calculated in Section 3.
The largest gap between L and M is only 2 for K I 20 (L = 15 and M = 17) and
only 4 for K 5 50 (L = 34 and M = 38).

When N cannot be expressed as K(K - 1) + 1, we can create a degenerate set
of Si’s in a similar way. In order to obtain Si’s for N = 5, for instance, we first
create a set of Si’s for M = 7 using the method described in 2.2 and then replace
7 and 6 with 5 and 4, respectively, and remove S7 and Ss, which produces the
following set Of Si’S:

& = 11, 2, 31,
s2 = (2, 4),
s3 = (3, 5, 4),
s4 = (1, 4, 51,
s5 = (2, 5).

Method 2. Consider a grid of L x L, and number the L2 grid points from 1 to
L2. A subset Si is defined to be the set of grid points on the row or the column
passing through point i. Then it is clear that Si II Sj # 0 for any i and j, 1 5 i,
j I L2. The set of Si’s is symmetric in the sense that 1 Si 1 = 2L - 1 for any i and
that any i is contained in (2L - 1) subsets. In this construction,

(Sil=Z&V-1 for any i.

Therefore, the number of messages per mutual exclusion is about twice that
calculated in Section 3.

If N is not a square of an integer, we can create a degenerate grid whose
outermost row (and column, if necessary) is reduced in size. Any fractional row
or column is completed by complementing its missing part from another row or
column when Si’s are determined.

8. MESSAGE TRAFFIC

We discuss two cases separately.

8.1 Under Light Demand

When the demand is light and contention rarely occurs, one instance of mutual
exclusion requires (K - 1) REQUEST messages and (K - 1) LOCKED messages
to ensure that all members of Si have been locked, and (K - 1) RELEASE
messages to clear the REQUESTS. A total of three (K - 1) messages are required.
Table I shows the comparison with Ricart and Agrawala’s algorithm. It is seen
that under light demand the proposed algorithm almost always requires fewer
messages than Ricart and Agrawala’s algorithm.

The above examples are for those values of K for which a finite projective
plane exists. When a finite projective plane does not exist, some redundancy
exists among Si’s and the number of messages required to create mutual exclusion
increases accordingly. Such cases are shown in Table II, where the values are
computed assuming that a mutual exclusion request is made uniformly from each
node. The advantage of the proposed algorithm is apparent, even in these
degenerate cases.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

156 l ,Mamoru Maekawa

Table I

Proposed Ricart and Agrawala’s
N algorithm algorithm

3(K=2) 3 4
7(K=3) 6 12

13 (K = 4) 9 24
21 (K = 5) 12 40

133 (K = 12) 33 264
381 (K=20) 57 760

Table II

Proposed Ricart and Agrawala’s
N algorithm algorithm

5 4.8 8
6 5.5 10

10 8.1 18

18 11.7 34

8.2 Under Heavy Demand

Under heavy demand, a new REQUEST will most likely fail to lock its destination
node. Thus, we expect to have (K - 1) REQUEST messages, (K - 1) FAILED
messages, (K - 1) LOCKED messages to obtain mutual exclusion, and (K - 1)
RELEASE messages to release the REQUEST. A total of four (K - 1) messages
are required per mutual exclusion.

If a new REQUEST is initiated from a node that has neither requested mutual
exclusion nor participated in the algorithm as a member node for a certain period,
it will most likely precede other REQUESTS. It then causes an INQUIRE message
to be sent, for which a RELINQUISH is returned. In this case, (K - 1) REQUEST
messages, (K - 1) INQUIRE messages, (K - 1) RELINQUISH messages, and
(K - 1) LOCKED messages are required to obtain mutual exclusion. Hence, five
(K - 1) messages are altogether required per mutual exclusion. This is the worst
case because a RELINQUISH message is not needed when the node is already
in a critical section or is winning to obtain mutual exclusion. Furthermore, it is
expected that under heavy demand almost all nodes participate in the algorithm
as a requestor or a member node.

9. NODE FAILURE

It is important to consider node failures in distributed systems. Although’nodes
can fail in many ways [7-91, only those failure nodes that stop functioning and
cannot return messages are considered here. In such failures, all information
kept in the failed nodes is lost. We assume that a node failure can be detected
by another node and a failed node is removed from the system. A simple approach
for node removal is to have another node to take over the role of the failed node.
This corresponds to the degeneration described above and will cause the overtak-
ing node to play a somewhat greater role.

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1935.

A fi Algorithm for Mutual Exclusion in Decentralized Systems

Table III. A Comparison with Other Algorithms

l 157

Fully centralized
algorithm Proposed algorithm Ricart and Agrawala’s

(one control node) algorithm

The number of nodes 1 m-1 N-l
to which a RE-
QUEST must be
sent

The number of nodes N 4% N
about which each
(control) node keeps
dynamic information

The number of nodes, N %m 1
dynamic information
about which is lost
by a (control) node
failure

The number of nodes 0 45 N
about which each
(control) node keeps
static information

Removal of a (control) Needs a back-up Dynamically Dynamically
node control node possible possible

Overtaking by another Needs a back-up Dynamically Not necessary
node control node possible

In considering a node removal, we must consider the amount of information
kept in and transferred between nodes that is necessary to execute a mutual
exclusion algorithm.

Table III summarizes for three algorithms, including a fully centralized algo-
rithm. Thomas’s majority consensus algorithm [ll] is basically the same as
Ricart and Agrawala’s algorithm. The fully centralized algorithm is executed by
one control node that manages mutual exclusion. It requires only one REQUEST
to be sent to the control node per mutual exclusion, whereas the other algorithms
require (a - 1) and (N - 1) messages, respectively. This is a penalty that has
to be paid to have a distributed algorithm.

In order for any mutual exclusion algorithm to operate, each (control) node
must have operational information, by dynamic and static. The dynamic infor-
mation is information about messages and the status of the related nodes, whereas
the static information is information that will never be changed once initialized,
such as the total number of nodes and the node numbers. A node removal affects
both the dynamic and static information. In case of the dynamic information, a
removal of a (control) node does not cause a loss of the dynamic information if
the dynamic information is duplicated in other nodes. A failed node can simply
be removed. However, the static information in each (control) node must be
modified. In Ricart and Agrawala’s algorithm, a node removal causes no loss of
dynamic information but requires a modification of the static information in
each node. This requires O(N) messages. On the other hand, in the fully
centralized algorithm, all dynamic information is lost by the removal of the
control node, whereas no static information is lost. A backup controller is required

ACM Transactions on Computer Systems, Vol. 3, NO. 2, May 1985.

158 l Mamoru Maekawa

to take over the failed controller and O(N) messages are required to regain
dynamic information. In the algorithm proposed in this paper, dynamic infor-
mation about (fi - 1) nodes is lost by a removal of the failed node. This is the
reason why another node should logically take over the role of the failed node.
Any other node can logically take that role over because each node executes an
identical algorithm. The lost dynamic information can be regained by O(a),
instead of O(N), messages. The static information also needs to be modified in
only (fi - 1) nodes. Therefore, it is generally expected that the proposed
algorithm requires fewer messages than the other two algorithms to remove a
node despite the fact that some dynamic information is lost. This is summarized
in Table III.

10. VARIATIONS

The algorithm presented in Section 4 simultaneously sends a REQUEST to each
member node and allows fully parallel operation. Thus, the delay incurred in
running the algorithm is the sum of the time it takes to send a REQUEST and
receive a LOCKED message. This is the minimum delay required to run any
mutual exclusion algorithm. Ricart and Agrawala’s and Thomas’s algorithms also
basically have the same delay. If a greater delay is tolerated, REQUEST messages
can be sent in a systemwise prespecified order, one by one, only after a LOCKED
message is returned for the previous REQUEST. This will simplify the algorithm
and requires only two (K - 1) messages to create an instance of mutual exclusion.
This can further be reduced to K message passes by cyclically passing a RE-
QUEST among the member nodes. In either method, additional (K - 1) messages
or message passes are required to clear the REQUESTS.

Il. CONCLUSIONS

A distributed algorithm that creates mutual exclusion using c fi messages, where
c is a constant between 3 and 5, has been presented. The algorithm is symmetric
and allows fully parallel operation. It also allows a node removal. The proposed
algorithm is optimal in terms of the number of messages used to create mutual
exclusion among fully distributed algorithms, where the term distributed is used
here to mean that each node serves as an arbitrator for the same number of
nodes.

Several mutual exclusion algorithms for distributed systems are available [3-
6,8-111, as well as a number of their variations. These algorithms vary in many
respects, including the degree of distribution of control, the degree of parallel
operation, traffic intensity, the delay incurred, applicable network topologies,
and reliability. In applying these algorithms to a real system, a suitable algorithm
will be selected depending on such factors as network topology, network size, and
performance, reliability, and extensibility requirements.

ACKNOWLEDGMENTS

Kiyoshi Ishihata read the draft and suggested many improvements. The com-
ments of the referees were most helpful in clarifying ambiguous points and
improving the presentation.
ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1935.

A ~6’ Algorithm for Mutual Exclusion in Decentralized Systems 159

REFERENCES

1. ALBERT, A. A., AND SANDLER, R. An Introduction to Finite Projective Planes. Holt, Rinehart,
and Winston, New York, 1968.

2. CARVALHO, 0. S. F., AND ROUCAIROL, G. On mutual exclusion in computer networks. Commun.
ACM 26, 2 (Feb. 1983), 146-147.

3. CHANG, E. J. H., AND ROBERTS, R. An improved algorithm for decentralized extrema-finding
in circular configurations of processes. Commun. ACM 22,5 (May 1979), 281-283.

4. GARCIA-M• LINA, H., AND BARBARA, D. How to assign votes in a distributed system. Tech. Rep.
311, Dept. of Electrical Engineering and Computer Science, Princeton Univ., Princeton, N.J.,
1983.

5. GIFFORD, D. K. Weighted voting for replicated data. In Proceedings of the 7th Symposium on
Operating System Principles (Pacific Grove, Calif., Dec. lo-12), ACM, New York, 1979, pp. 150-
162.

6. HIRSCHBERG, D. S., AND SINCLAIR, J. B. Decentralized extrema-finding in ciruclar configura-
tions of processors. Commun. ACM 23, 11 (Nov. 1980), 627-628.

7. LAMPORT, L. The implementation of reliable distributed multiprocess systems. Comput. Net-
works 2 (1978),95-114.

8. RICART, G., AND AGRAWALA, A. K. An optimal algorithm for mutual exclusion in computer
networks. Commun. ACM 24, 1 (Jan. 1981), 9-17.

9. SCHNEIDER, F. B. Synchronization in distributed programs. ACM Trans. Program. Lung. Syst.
4,2 (Apr. 1982), 125-148.

10. SKEEN, D. A quorum-based commit protocol. In Proceedings of the 6th Berkeley Workshop on
Distributed Data Management and Computer Networks (Feb. 1982), pp. 69-80.

11. THOMAS, R. H. A majority consensus approach to concurrency control for multiple copy
databases. ACM Trans. Database Syst. 4,2 (June 1979), 180-209.

Received June 1983; revised March 1984; accepted July 1984

ACM Transactions on Computer Systems, Vol. 3, No. 2, May 1985.

