What’s a Network/Graph?

• Has vertices (i.e., nodes)
 – E.g., in the Facebook graph, each user = a vertex (or a node)

• Has edges that connect pairs of vertices
 – E.g., in the Facebook graph, a friend relationship = an edge
• Large graphs/network are all around us
 – Internet: vertices are routers/switches and edges are links
 – World Wide Web: vertices are webpages, and edges are URL links on a webpage pointing to another webpage
 • Called “Directed” graph as edges are uni-directional
 – Social networks: Facebook, Twitter, LinkedIn
 – Biological networks: DNA interaction graphs, ecosystem graphs, etc.
Complexity of Networks

- **Structural**: human population has ~8 B nodes, there are millions of computers on the Internet...
- **Evolution**: people make new friends all the time, ISP’s change hands all the time...
- **Diversity**: some people are more popular, some friendships are more important...
- **Node Complexity**: Endpoints have different CPUs, Windows is a complicated OS, Mobile devices ...
- **Emergent phenomena**: simple end behavior ➔ leads to ➔ complex system-wide behavior.
 - If we understand the basics of climate, why is weather still so unpredictable?
Network Structure

- “Six degrees of Kevin Bacon”
- Milgram’s experiment in 1970

- Recent work on shows similarities between the structures of: Internet, WWW, human social networks, p2p overlays, Electric power grid, protein networks
- These networks have “evolved naturally”
- Many of these are “small world networks”
Two Important Network Properties

1. **Clustering Coefficient**: CC
 \[\text{Pr(A-B edge, given an A-C edge and a C-B edge)} \]

2. **Path Length** of shortest path
 - Extended Ring graph: high CC, long paths
 - Random graph: low CC, short paths
 - Small World Networks: high CC, short paths
Deriving Small-world Graphs

Convert more and more edges to point to random nodes

- Path Length
- Clustering Coefficient

Extended Ring graph → Small World Networks → Random Graph
Most “natural evolved” networks are small world

• Network of actors → six degrees of Kevin Bacon
• Network of humans → Milgram’s experiment
• Co-authorship network → “Erdos Number”
• World Wide Web, the Internet, …

Many of these networks also “grow incrementally”

“Preferential” model of growth

• When adding a vertex to graph, connect it to existing vertex v with probability proportional to num_neighbors(v)
Degrees

Degree of a vertex = number of its immediate neighbor vertices

Degree distribution – what is the probability of a given node having k edges (neighbors, friends, …)

- Regular graph: all nodes same degree
- Gaussian
- Random graph: Exponential $e^{-k.c}$
- Power law: $k^{-\alpha}$
Power Law Graphs

The number of nodes with degree k is $\sim k^{-\alpha}$.

- **Power law**
- **Exponential**
- **Heavy tailed**

![Graph showing power law relationship between log(number of nodes) and log(node degree=k).]
A lot of small world networks are power law graphs
- Internet backbone, telephone call graph, protein networks
- WWW is a small-world graph and also a power-law graph with $\alpha=2.1-2.4$
- Gnutella p2p system network has heavy-tailed degree distribution

Power law networks also called *scale-free*
- Gnutella has 3.4 edges per vertex, *independent of scale* (i.e., *number of vertices*)
Small-world ≠ Power-Law

• Not all small world networks are power law
 – E.g., co-author networks
• Not all power-law networks are small world
 – E.g., Disconnected power-law networks
Most nodes have small degree, but a few nodes have high degree.

Attacks on small world networks

- Killing a large number of randomly chosen nodes does not disconnect graph.
- Killing a few high-degree nodes will disconnect graph.

“A few (of the many thousand) nutrients are very important to your body”

“The Electric Grid is very vulnerable to attacks”
• Build shortest-path routes between every pair of vertices
• => Most of these routes will pass via the few high-degree vertices in the graphs
 – => High-degree vertices are heavily overloaded
 – High-degree vertices more likely to suffer congestions or crash
• Same phenomenon in Electric power grid
• Solution may be to introduce some randomness in path selection; don’t always use shortest path
• Networks (graphs) are all around us
 – Man-made networks like Internet, WWW, p2p
 – Natural networks like protein networks, human social network
• Yet, many of these have common characteristics
 – Small-world
 – Power-law
• Useful to know this: when designing distributed systems that run on such networks
 – Can better predict how these networks might behave
Announcements

- HW4, MP4 due soon after Fall Break!
- Start now, finish soon